skip to main content

Title: Multimessenger parameter inference of gravitational-wave and electromagnetic observations of white dwarf binaries

The upcoming Laser Interferometer Space Antenna (LISA) will detect a large gravitational-wave foreground of Galactic white dwarf binaries. These sources are exceptional for their probable detection at electromagnetic wavelengths, some long before LISA flies. Studies in both gravitational and electromagnetic waves will yield strong constraints on system parameters not achievable through measurements of one messenger alone. In this work, we present a Bayesian inference pipeline and simulation suite in which we study potential constraints on binaries in a variety of configurations. We show how using LISA detections and parameter estimation can significantly improve constraints on system parameters when used as a prior for the electromagnetic analyses. We also provide rules of thumb for how current measurements will benefit from LISA measurements in the future.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 4121-4128
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Compact-object binaries including a white dwarf component are unique among gravitational-wave sources because their evolution is governed not just by general relativity and tides, but also by mass transfer. While the black hole and neutron star binaries observed with ground-based gravitational-wave detectors are driven to inspiral due to the emission of gravitational radiation—manifesting as a “chirp-like” gravitational-wave signal—the astrophysical processes at work in double white dwarf (DWD) systems can cause the inspiral to stall and even reverse into an outspiral. The dynamics of the DWD outspiral thus encode information about tides, which tell us about the behavior of electron-degenerate matter. We carry out a population study to determine the effect of the strength of tides on the distributions of the DWD binary parameters that the Laser Interferometer Space Antenna (LISA) will be able to constrain. We find that the strength of tidal coupling parameterized via the tidal synchronization timescale at the onset of mass transfer affects the distribution of gravitational-wave frequencies and frequency derivatives for detectably mass-transferring DWD systems. Using a hierarchical Bayesian framework informed by binary population synthesis simulations, we demonstrate how this parameter can be inferred using LISA observations. By measuring the population properties of DWDs, LISA will be able to probe the behavior of electron-degenerate matter.

    more » « less
  2. ABSTRACT Unlike traditional electromagnetic measurements, gravitational-wave observations are not affected by crowding and extinction. For this reason, compact object binaries orbiting around a massive black hole can be used as probes of the inner environment of the black hole in regions inaccessible to traditional astronomical measurements. The orbit of the binary’s barycentre around the massive black hole will cause a Doppler shift in the gravitational waveform, which is in principle measurable by future space-based gravitational-wave interferometers, such as the Laser Interferometer Space Antenna (LISA). We investigate the conditions under which these Doppler shifts are observable by LISA. Our results imply that Doppler shift observations can be used to study the central region of globular clusters in the Milky Way, as well the central environment of extragalactic massive black holes. 
    more » « less

    White dwarf binaries with orbital periods below 1 h will be the most numerous sources for the space-based gravitational wave detector Laser Interferometer Space Antenna (LISA). Based on thousands of individually resolved systems, we will be able to constrain binary evolution and provide a new map of the Milky Way and its close surroundings. In this paper we predict the main properties of populations of different types of detached white dwarf binaries detected by LISA over time. For the first time, we combine a high-resolution cosmological simulation of a Milky Way-mass galaxy (taken from the FIRE project) with a binary population synthesis model for low- and intermediate-mass stars. Our Galaxy model therefore provides a cosmologically realistic star formation and metallicity history for the Galaxy and naturally produces its different components such as the thin and thick disc, the bulge, the stellar halo, and satellite galaxies and streams. Thanks to the simulation, we show how different Galactic components contribute differently to the gravitational wave signal, mostly due to their typical age and distance distributions. We find that the dominant LISA sources will be He–He double white dwarfs (DWDs) and He–CO DWDs with important contributions from the thick disc and bulge. The resulting sky map of the sources is different from previous models, with important consequences for the searches for electromagnetic counterparts and data analysis. We also emphasize that much of the science-enabling information regarding white dwarf binaries, such as the chirp mass and the sky localization, becomes increasingly rich with long observations, including an extended mission up to 8 yr.

    more » « less
  4. Abstract Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the $\sim 10$ ∼ 10 –10 3 Hz band of ground-based observatories and the $\sim 10^{-4}$ ∼ 1 0 − 4 –10 − 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ( $\sim 10^{2}$ ∼ 1 0 2 –10 4 M ⊙ ) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology. 
    more » « less
  5. Abstract The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe. 
    more » « less