Abstract Seismic azimuthal anisotropy beneath Australia is investigated using splitting of the teleseismic PKS, SKKS, and SKS phases to delineate asthenospheric flow and lithospheric deformation beneath one of the oldest and fast‐moving continents on Earth. In total 511 pairs of high‐quality splitting parameters were observed at 116 seismic stations. Unlike other stable continental areas in Africa, East Asia, and North America, where spatially consistent splitting parameters dominate, the fast orientations and splitting times observed in Australia show a complex pattern, with a slightly smaller than normal average splitting time of 0.85 ± 0.33 s. On the North Australian Craton, the fast orientations are mostly N‐S, which is parallel to the absolute plate motion (APM) direction in the hotspot frame. Those observed in the South Australian Craton are mostly NE‐SW and E‐W, which are perpendicular to the maximum lithospheric horizontal shortening direction. In east Australia, the observed azimuthal anisotropy can be attributed to either APM induced simple shear or lithospheric fabric parallel to the strike of the orogenic belts. The observed spatial variations of the seismic azimuthal anisotropy, when combined with results from depth estimation utilizing the spatial coherency of the splitting parameters and seismic tomography studies, suggest that the azimuthal anisotropy in Australia can mostly be related to simple shear in the rheologically transition layer between the lithosphere and asthenosphere. Non‐APM parallel anisotropy is attributable to modulations of the mantle flow system by undulations of the bottom of the lithosphere, with a spatially variable degree of contribution from lithospheric fabric.
more »
« less
Localized Anisotropic Domains Beneath Eastern North America
Abstract Seismic anisotropy beneath eastern North America likely reflects both the remnant lithospheric fabrics and the present‐day deformation of the asthenosphere. We report new observations of splitting in core‐refracted shear phases observed over 3–5 years at 33 sites in New Jersey, New York, and states in the New England region and also include data from eight previously studied locations. Our data set emphasizes back azimuthal coverage necessary to capture the directional variation of splitting parameters expected from vertically varying anisotropy. We report single‐phase splitting parameters as well as station‐averaged values based on splitting intensity technique that incorporates all observed records regardless of whether they showed evidence of splitting or not. Trends of averaged fast shear wave polarizations appear coherent and are approximately aligned with absolute plate motion direction. The general disparity between the fast axes and the trend of surface tectonic features suggests a dominant asthenosphere contribution for the observed seismic anisotropy. Averaged delay values systematically increase from ~0.5 s in New Jersey to ~1.4 s in Maine. Splitting parameters vary at all sites, and neighboring stations often show similar patterns of directional variation. We developed criteria to group stations based on their splitting patterns and identified four domains with distinct anisotropic properties. Splitting patterns of three domains suggest a layered anisotropic structure that is geographically variable, outlining distinct regions in the continental mantle, for example, the Proterozoic lithosphere of the Adirondack Mountains. A domain coincident with the North Appalachian Anomaly displays virtually no splitting, implying that the lithospheric fabric was locally erased.
more »
« less
- Award ID(s):
- 1735912
- PAR ID:
- 10457871
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 20
- Issue:
- 11
- ISSN:
- 1525-2027
- Page Range / eLocation ID:
- p. 5499-5521
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We use splitting in core‐refracted teleseismic shear waves (SKS, PKS, and similar) to investigate anisotropic properties of the upper mantle beneath the Superior craton in eastern North America and the Yilgarn craton in Western Australia. At four sites in each craton, we assemble extensive data sets that emphasize directional coverage, and use three different measurement methods to develop mutually consistent constraints on the nature of splitting and on the likely anisotropic properties that cause it. In both cratons, we see evidence of clear directional variation in both delays and fast polarization directions, as well as lateral differences between sites. Relatively small (0.3–0.8 s) amounts of splitting imply weak anisotropy within 150–220 km thick mantle lithosphere. Anisotropy in the asthenosphere likely contributes to splitting in North America where fast directions align with absolute plate motion, but not in Western Australia where fast polarizations and plate motion are nearly orthogonal.more » « less
-
Abstract Seismic anisotropy beneath eastern North America, as expressed in shear wave splitting observations, has been attributed to plate motion‐parallel shear in the asthenosphere, resulting in fast axes aligned with the plate motion. However, deviations of fast axes from plate motion directions are observed near major tectonic boundaries of the Appalachians, indicating contributions from lithospheric anisotropy associated with past tectonic processes. In this study, we conduct anisotropic receiver function (RF) analysis using data from a dense seismic array traversing the New England Appalachians in Connecticut to examine anisotropic layers in the crust and upper mantle and correlate them with past tectonic processes as well as present‐day mantle flow. We use the harmonic decomposition method to separate directionally‐dependent variations of RFs and focus on features with the same harmonic signals observed across multiple stations. Within the crust, there are multiple features that may be correlated with stratification in the Hartford Basin, faults in the Taconic thrust belt, shear zones formed during Salinic/Acadian terrane accretion events, and orogen‐parallel crustal flow in the Acadian orogenic plateau. We apply a Bayesian inversion method to obtain quantitative constraints on the direction and strength of intra‐crustal anisotropy beneath the Hartford Basin. In the upper mantle, we identify a fossil shear zone possibly formed during oblique subduction of Rheic Ocean lithosphere. We also find evidence for a plate motion‐parallel flow zone in the asthenosphere that is likely disturbed by mantle upwelling near the southern margin of the Northern Appalachian Anomaly in the eastern part of the study area.more » « less
-
Abstract Little has been seismically imaged through the lithosphere and mantle at rifted margins across the continent‐ocean transition. A 2014–2015 community seismic experiment deployed broadband seismic instruments across the shoreline of the eastern North American rifted margin. Previous shear‐wave splitting along the margin shows several perplexing patterns of anisotropy, and by proxy, mantle flow. Neither margin parallel offshore fast azimuths nor null splitting on the continental coast obviously accord with absolute plate motion, paleo‐spreading, or rift‐induced anisotropy. Splitting measurements, however, offer no depth constraints on anisotropy. Additionally, mantle structure has not yet been imaged in detail across the continent‐ocean transition. We used teleseismicS,SKS,SKKS, andPKSsplitting and differential travel times recorded on ocean‐bottom seismometers, regional seismic networks, and EarthScope Transportable Array stations to conduct joint isotropic/anisotropic tomography across the margin. The velocity model reveals a transition from fast, thick, continental keel to low velocity, thinned lithosphere eastward. Imaged short wavelength velocity anomalies can be largely explained by edge‐driven convection or shear‐driven upwelling. We also find that layered anisotropy is prevalent across the margin. The anisotropic fast polarization is parallel to the margin within the asthenosphere. This suggests margin parallel flow beneath the plate. The lower oceanic lithosphere preserves paleo‐spreading‐parallel anisotropy, while the continental lithosphere has complex anisotropy reflecting several Wilson cycles. These results demonstrate the complex and active nature of a margin which is traditionally considered tectonically inactive.more » « less
-
SUMMARY The vast majority of teleseismic XKS (including SKS, SKKS and PKS) shear wave splitting studies interpret the observed splitting parameters (fast orientation and splitting time) based on the assumption of a spatially invariant anisotropy structure in the vicinity of a recording station. For such anisotropy structures the observed splitting parameters are either independent of the arriving azimuth of the seismic ray paths if the medium traversed by the ray paths can be represented by a single layer of anisotropy with a horizontal axis of symmetry (i.e. simple anisotropy), or demonstrate a periodic variation with respect to the arriving azimuth for a more complicated structure of anisotropy (e.g. multiple layers with a horizontal axis of symmetry, or a single layer with a dipping axis). When a recording station is located near the boundary of two or more regions with different anisotropy characteristics, the observed splitting parameters are dependent on the location of the ray piercing points. Such a piercing-point dependence is clearly observed using a total of 360 pairs of XKS splitting parameters at three stations situated near the northeastern edge of the Sichuan Basin in central China. For a given station, the fast orientations differ as much as 90°, and the azimuthal variation of the fast orientations lacks a 90° or 180° periodicity which is expected for double-layered or dipping axis anisotropy. The observed splitting parameters from the three stations are spatially most consistent when they are projected at a depth of ∼250 km, and can be explained by shear strain associated with the absolute plate motion and mantle flow deflected by the cone-shaped lithospheric root of the Sichuan Basin.more » « less
An official website of the United States government
