The root microbiome structure ensures optimal plant host health and fitness, and it is, at least in part, defined by the plant genotype. It is well documented that root-secreted amino acids promote microbial chemotaxis and growth in the rhizosphere. However, whether the plant-mediated re-uptake of amino acids contributes to maintaining optimal levels of amino acids in the root exudates, and, in turn, microbial growth and metabolism, remains to be established. Here, we show that Lysine-Histidine Transporter-1 (LHT1), an amino acid inward transporter expressed in Arabidopsis thaliana roots, limits the growth of the plant-growth-promoting bacteria Pseudomonas simiae WCS417r (Ps WCS417r). The amino acid profiling of the lht1 mutant root exudates showed increased levels of glutamine, among other amino acids. Interestingly, lht1 exudates or Gln-supplemented wild-type exudates enhance Ps WCS417r growth. However, despite promoting bacterial growth and robust root colonization, lht1 exudates and Gln-supplemented wild-type exudates inhibited plant growth in a Ps WCS417r-dependent manner. The transcriptional analysis of defense and growth marker genes revealed that plant growth inhibition was not linked to the elicitation of plant defense but likely to the impact of Ps WCS417r amino acids metabolism on auxin signaling. These data suggest that an excess of amino acids in the rhizosphere impacts Ps WCS417r metabolism, which, in turn, inhibits plant growth. Together, these results show that LHT1 regulates the amino-acid-mediated interaction between plants and Ps WCS417r and suggest a complex relationship between root-exuded amino acids, root colonization by beneficial bacteria, bacterial metabolism, and plant growth promotion.
more »
« less
The role of rhizodeposits in shaping rhizomicrobiome
Summary Rhizomicrobiome, the communities of microorganisms surrounding the root of the plant, plays a vital role in promoting plant growth and health. The composition of rhizomicrobiome is dynamic both temporally and spatially, and is influenced greatly by the plant host and environmental factors. One of the key influencing factors is rhizodeposits, composed of root‐released tissue cells, exudates, lysates, volatile compounds, etc. Rhizodeposits are rich in carbon and nitrogen elements, and able to select and fuel the growth of rhizomicrobiome. In this minireview, we overview the generation, composition and dynamics of rhizodeposits, and discuss recent work describing the general and specific impacts of rhizodeposits on rhizomicrobiome. We focus further on root exudates, the most dynamic component of rhizodeposits, and review recent progresses about the influence of specific root exudates in promoting bacterial root colonization, inducing biofilm development, acting as plant defence and shaping the rhizomicrobiome.
more »
« less
- Award ID(s):
- 1651732
- PAR ID:
- 10457901
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Environmental Microbiology Reports
- Volume:
- 12
- Issue:
- 2
- ISSN:
- 1758-2229
- Format(s):
- Medium: X Size: p. 160-172
- Size(s):
- p. 160-172
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Plants live in association with microorganisms that positively influence plant development, vigor, and fitness in response to pathogens and abiotic stressors. The bulk of the plant microbiome is concentrated belowground at the plant root-soil interface. Plant roots secrete carbon-rich rhizodeposits containing primary and secondary low molecular weight metabolites, lysates, and mucilages. These exudates provide nutrients for soil microorganisms and modulate their affinity to host plants, but molecular details of this process are largely unresolved. We addressed this gap by focusing on the molecular dialog between eight well-characterized beneficial strains of the Pseudomonas fluorescens group and Brachypodium distachyon , a model for economically important food, feed, forage, and biomass crops of the grass family. We collected and analyzed root exudates of B. distachyon and demonstrated the presence of multiple carbohydrates, amino acids, organic acids, and phenolic compounds. The subsequent screening of bacteria by Biolog Phenotype MicroArrays revealed that many of these metabolites provide carbon and energy for the Pseudomonas strains. RNA-seq profiling of bacterial cultures amended with root exudates revealed changes in the expression of genes encoding numerous catabolic and anabolic enzymes, transporters, transcriptional regulators, stress response, and conserved hypothetical proteins. Almost half of the differentially expressed genes mapped to the variable part of the strains’ pangenome, reflecting the importance of the variable gene content in the adaptation of P. fluorescens to the rhizosphere lifestyle. Our results collectively reveal the diversity of cellular pathways and physiological responses underlying the establishment of mutualistic interactions between these beneficial rhizobacteria and their plant hosts.more » « less
-
Abstract BackgroundAlthough there have been numerous studies describing plant growth systems for root exudate collection, a common limitation is that these systems require disruption of the plant root system to facilitate exudate collection. Here, we present a newly designed semi-hydroponic system that uses glass beads as solid support to simulate soil impedance, which combined with drip irrigation, facilitates growth of healthy maize plants, collection and analysis of root exudates, and phenotyping of the roots with minimal growth disturbance or root damage. ResultsThis system was used to collect root exudates from seven maize genotypes using water or 1 mM CaCl2, and to measure root phenotype data using standard methods and the Digital imaging of root traits (DIRT) software. LC–MS/MS (Liquid Chromatography—Tandem Mass Spectrometry) and GC–MS (Gas Chromatography—Mass Spectrometry) targeted metabolomics platforms were used to detect and quantify metabolites in the root exudates. Phytohormones, some of which are reported in maize root exudates for the first time, the benzoxazinoid DIMBOA (2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one), amino acids, and sugars were detected and quantified. After validating the methodology using known concentrations of standards for the targeted compounds, we found that the choice of the exudate collection solution affected the exudation and analysis of a subset of analyzed metabolites. No differences between collection in water or CaCl2were found for phytohormones and sugars. In contrast, the amino acids were more concentrated when water was used as the exudate collection solution. The collection in CaCl2required a clean-up step before MS analysis which was found to interfere with the detection of a subset of the amino acids. Finally, using the phenotypic measurements and the metabolite data, significant differences between genotypes were found and correlations between metabolites and phenotypic traits were identified. ConclusionsA new plant growth system combining glass beads supported hydroponics with semi-automated drip irrigation of sterile solutions was implemented to grow maize plants and collect root exudates without disturbing or damaging the roots. The validated targeted exudate metabolomics platform combined with root phenotyping provides a powerful tool to link plant root and exudate phenotypes to genotype and study the natural variation of plant populations.more » « less
-
ABSTRACT Plant roots shape the rhizosphere community by secreting compounds that recruit diverse bacteria. Colonization of various plant roots by the motile alphaproteobacterium Azospirillum brasilens e causes increased plant growth, root volume, and crop yield. Bacterial chemotaxis in this and other motile soil bacteria is critical for competitive colonization of the root surfaces. The role of chemotaxis in root surface colonization has previously been established by endpoint analyses of bacterial colonization levels detected a few hours to days after inoculation. More recently, microfluidic devices have been used to study plant-microbe interactions, but these devices are size limited. Here, we use a novel slide-in chamber that allows real-time monitoring of plant-microbe interactions using agriculturally relevant seedlings to characterize how bacterial chemotaxis mediates plant root surface colonization during the association of A. brasilens e with Triticum aestivum (wheat) and Medicago sativa (alfalfa) seedlings. We track A. brasilense accumulation in the rhizosphere and on the root surfaces of wheat and alfalfa. A. brasilense motile cells display distinct chemotaxis behaviors in different regions of the roots, including attractant and repellent responses that ultimately drive surface colonization patterns. We also combine these observations with real-time analyses of behaviors of wild-type and mutant strains to link chemotaxis responses to distinct chemicals identified in root exudates to specific chemoreceptors that together explain the chemotactic response of motile cells in different regions of the roots. Furthermore, the bacterial second messenger c-di-GMP modulates these chemotaxis responses. Together, these findings illustrate dynamic bacterial chemotaxis responses to rhizosphere gradients that guide root surface colonization. IMPORTANCE Plant root exudates play critical roles in shaping rhizosphere microbial communities, and the ability of motile bacteria to respond to these gradients mediates competitive colonization of root surfaces. Root exudates are complex chemical mixtures that are spatially and temporally dynamic. Identifying the exact chemical(s) that mediates the recruitment of soil bacteria to specific regions of the roots is thus challenging. Here, we connect patterns of bacterial chemotaxis responses and sensing by chemoreceptors to chemicals found in root exudate gradients and identify key chemical signals that shape root surface colonization in different plants and regions of the roots.more » « less
-
Alexandre, Gladys (Ed.)Decrypting the chemical interactions between plant roots and the soil microbiome is a gateway for future manipulation and management of the rhizosphere, a soil compartment critical to promoting plant fitness and yields. Our experimental results demonstrate how soil microbial community and genomic diversity is influenced by root exudates of differing chemical compositions and how changes in this microbiome result in altered production of plant-relevant metabolites.more » « less
An official website of the United States government
