skip to main content


Title: Profiles of middle school science teachers: Accounting for cognitive and motivational characteristics
Abstract

Teachers play a critical role in successfully implementing science education reforms in the United States to provide high‐quality science learning opportunities to all students. However, the differentiated ways in which teachers make decisions about their science teaching are not well understood. This study takes a person‐centered approach by applying latent profile analysis to examine how cognitive (pedagogical content knowledge) and motivational (instructional goal orientations, self‐efficacy beliefs, and reform values) characteristics combine to form science teacher profiles in middle school. Predictors of profile membership (bachelor's degree, school %FRL) and both teacher (science instructional practices) and student (science achievement, engagement, and self‐efficacy) outcomes related to the teacher profiles were also examined. Five science teacher profiles were identified (severely discouraged but reform oriented, discouraged but reform oriented, conventional, confident and mastery oriented, and confident with multiple goal approaches) that represented unique configurations of cognitive and motivation characteristics. Additionally, findings showed that the teacher profiles were significantly related to three dimensions of science instructional practice including communication, discourse, and reasoning. Finally, the teacher profiles were significantly related to student science achievement and motivational outcomes. Implications for differentiated approaches to teacher professional learning and supports for science instruction are discussed.

 
more » « less
NSF-PAR ID:
10457902
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Research in Science Teaching
Volume:
57
Issue:
6
ISSN:
0022-4308
Page Range / eLocation ID:
p. 911-942
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Teacher self-efficacy (SE) has been observed to be an 'important construct for Computer Science (CS) teachers' professional development because it can predict both teaching behaviors as well as student outcomes" [1]. The purpose of the present study was to investigate teacher CS SE during a two-year federally funded professional development (PD) and curriculum development project for middle school teachers incorporating game-design and the Unity development platform. The research question investigated is: How does teacher self-efficacy for teaching computer science via game design with the Unity game development platform change during a year-long PD program? Investigations of teacher SE for teaching CS have resulted in some surprising results. For example, it has been reported that - There were no differences in self-efficacy based on teachers' overall level of experience, despite previous findings that teacher self-efficacy is related to amount of experience" and "no differences in self-efficacy related to the teachers' own level of experience with CS" [2], thus further study of CS teacher SE is warranted. Participants in this study were six middle school teachers from four middle schools in the southeastern United States. They participated in a year-long PD program learning the Unity game development platform, elements of game design, and foundations of learner motivation. Guided reflective journaling was used to track the teachers' SE during the first year of the project. Teachers completed journal prompts at four intervals. Prompts consisted of questions like "How do you currently feel about your ability to facilitate student learning with Unity?" and "Are you confident that you can implement the materials the way the project team has planned for them to be implemented?" Prior to beginning the project participants expressed confidence in being able to facilitate student learning after participating in the planned professional development, but there was some uneasiness about learning and using Unity. From a SE perspective their responses make sense, as all of the participants are experienced teachers and should have confidence in their general ability to teach. However, since Unity is a new programming environment for all of the teachers, they did not have the prior experience necessary to have a high degree of confidence that they could successfully use it with their students. 
    more » « less
  2. Self-efficacy, or the belief in one's ability to accomplish a task or achieve a goal, can significantly influence the effectiveness of various instructional methods to induce learning gains. The importance of self-efficacy is particularly pronounced in complex subjects like Computer Science, where students with high self-efficacy are more likely to feel confident in their ability to learn and succeed. Conversely, those with low self-efficacy may become discouraged and consider abandoning the field. The work presented here examines the relationship between self-efficacy and students learning computer programming concepts. For this purpose, we conducted a randomized control trial experiment with university-level students who were randomly assigned into two groups: a control group where participants read Java programs accompanied by explanatory texts (a passive strategy) and an experimental group where participants self-explain while interacting through dialogue with an intelligent tutoring system (an interactive strategy). We report here the findings of this experiment with a focus on self-efficacy, its relation to student learning gains (to evaluate the effectiveness, we measure pre/post-test), and other important factors such as prior knowledge or experimental condition/instructional strategies as well as interaction effects 
    more » « less
  3. Abstract

    This article reports on analyses of the instructional practices of six middle‐ and high‐school science teachers in the United States who participated in a research‐practice partnership that aims to support reform science education goals at scale. All six teachers were well qualified, experienced, and locally successful—respected by students, parents, colleagues, and administrators—but they differed in their success in supporting students' three‐dimensional learning. Our goal is to understand how the teachers' instructional practices contributed to their similarities in achieving local success and to differences in enabling students' learning, and to consider the implications of these findings for research‐practice partnerships. Data sources included classroom videos supplemented by interviews with teachers and focus students and examples of student work. We also compared students' learning gains by teacher using pre–post assessments that elicited three‐dimensional performances. Analyses of classroom videos showed how all six teachers achieved local success—they led effectively managed classrooms, covered the curriculum by teaching almost all unit activities, and assessed students' work in fair and efficient ways. There were important differences, however, in how teachers engaged students in science practices. Teachers in classrooms where students achieved lower learning gains followed a pattern of practice we describe asactivity‐based teaching, in which students completed investigations and hands‐on activities with few opportunities for sensemaking discussions or three‐dimensional science performances. Teachers whose students achieved higher learning gains combined the social stability characteristic of local classroom success with more demanding instructional practices associated withscientific sensemakingandcognitive apprenticeship. We conclude with a discussion of implications for research‐practice partnerships, highlighting how partnerships need to support all teachers in achieving both local and standards‐based success.

     
    more » « less
  4. This paper examines how practicing teachers approach and evaluate students’ critical thinking processes in science, using the implementation of an online, inquiry-based investigation in middle school classrooms as the context for teachers’ observations. Feedback and ratings from three samples of science teachers were analysed to determine how they valued and evaluated component processes of students’ critical thinking and how such processes were related to their instructional approaches and student outcomes. Drawing from an integrated view of teacher practice, results suggested that practicing science teachers readily observed and valued critical thinking processes that aligned to goal intentions focused on domain content and successful student thinking. These processes often manifested as components of effective scientific reasoning—for example, gathering evidence, analysing data, evaluating ideas, and developing strong arguments. However, teachers also expressed avoidance intentions related to student confusion and uncertainty before and after inquiry-based investigations designed for critical thinking. These findings highlight a potential disconnect between the benefits of productive student struggle for critical thinking as endorsed in the research on learning and science education and the meaning that teachers ascribe to such struggle as they seek to align their instructional practices to classroom challenges. 
    more » « less
  5. Teachers’ integration of the Next Generation Science Standards and corresponding Science and Engineering Practices (SEPs) illustrate current science education reform in the United States. Effective teacher professional development (PD) on SEPs is essential for reform success. In this study, we evaluated the Nebraska STEM Education Conference, a PD program for middle school, high school, and first- and second-year post-secondary STEM teachers. This SEP-oriented PD program focused predominantly on the SEPs ‘developing and using models’ and ‘using mathematics and computational thinking.’ An electronic survey was used to measure participants’ (n = 45) prior integration of SEPs, influential factors and barriers to using SEPs, and changes to interest and confidence in using SEPs as a result of attending the PD program. Our results showed that teachers had limited prior use of SEPs in their teaching. Student interest and learning outcomes were the factors found to be most influential to teachers’ use of SEPs, while limited knowledge, confidence, and resources were the most commonly identified barriers. As a result of attending the PD program, participants significantly improved their confidence and interest to incorporate SEPs. We recommend continued SEP-oriented PD to foster successful NGSS integration and to advance reforms in science education. 
    more » « less