skip to main content

Title: Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene

A comprehensive study on the prototype solid solution phase carbonitride MXene Ti3CN is conducted using nuclear magnetic resonance, electron spin resonance, total and quasi‐elastic neutron scattering, combined with density functional theory‐based electronic structure and molecular dynamic calculations. The combination of experiment and theory lead toward rational atomic structural models of Ti3CN. The remnant Al ions from the etching process significantly tune the interlayer spacing, distinct from the more typical MXene, Ti3C2, prepared similarly. Neutron scattering indicates the surface terminations of Ti3CN display high oxygen and fluorine concentrations and rather low hydroxyl and hydrogen concentrations. Calculations show that the structure including both the residual Al ions and mixed surface terminations give the best agreement with the measurements. The water molecules in Ti3CN are highly immobile, in strong contrast to those in Ti3C2. The analysis of the electronic structure suggests that the nitride MXene displays higher conductivity than the carbides. The absence of hydroxyl groups in terminations, the solid‐solution in the anion sites, the remnants within layers, and immobile water altogether make the carbonitrides a unique series in the MXene family, implying a further exploration of their exotic properties and applications in energy storage.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transition metal carbides (MXenes) are an emerging family of highly conductive two-dimensional materials with additional functional properties introduced by surface terminations. Further modification of the surface terminations makes MXenes even more appealing for practical applications. Herein, we report a facile and environmentally benign synthesis of reduced Ti 3 C 2 T x MXene (r-Ti 3 C 2 T x ) via a simple treatment with l -ascorbic acid at room temperature. r-Ti 3 C 2 T x shows a six-fold increase in electrical conductivity, from 471 ± 49 for regular Ti 3 C 2 T x to 2819 ± 306 S m −1 for the reduced version. Additionally, we show an enhanced oxidation stability of r-Ti 3 C 2 T x as compared to regular Ti 3 C 2 T x . An examination of the surface-enhanced Raman scattering (SERS) activity reveals that the SERS enhancement factor of r-Ti 3 C 2 T x is an order of magnitude higher than that of regular Ti 3 C 2 T x . The improved SERS activity of r-Ti 3 C 2 T x is attributed to the charge transfer interaction between the MXene surface and probe molecules, re-enforced by an increased electronic density of states (DOS) at the Fermi level of r-Ti 3 C 2 T x . The findings of this study suggest that reduced MXene could be a superior choice over regular MXene, especially for the applications that employ high electronic conductivity, such as electrode materials for batteries and supercapacitors, photodetectors, and SERS-based sensors. 
    more » « less
  2. Abstract

    The chemical stability of 2D MXene nanosheets in aqueous dispersions must be maintained to foster their widespread application. MXene nanosheets react with water, which results in the degradation of their 2D structure into oxides and carbon residues. The latter detrimentally restricts the shelf life of MXene dispersions and devices. However, the mechanism of MXene degradation in aqueous environment has yet to be fully understood. In this work, the oxidation kinetics is investigated of Ti3C2Txand Ti2CTxin aqueous media as a function of initial pH values, ionic strengths, and nanosheet concentrations. The pH value of the dispersion is found to change with time as a result of MXene oxidation. Specifically, MXene oxidation is accelerated in basic media by their reaction with hydroxyl anions. It is also demonstrated that oxidation kinetics are strongly dependent on nanosheet dispersion concentration, in which oxidation is accelerated for lower MXene concentrations. Ionic strength does not strongly affect MXene oxidation. The authors also report that citric acid acts as an effective antioxidant and mitigates the oxidation of both Ti3C2Txand Ti2CTxMXenes. Reactive molecular dynamic simulations suggest that citric acid associates with the nanosheet edge to hinder the initiation of oxidation.

    more » « less
  3. All-solid-state batteries (ASSBs) have garnered increasing attention due to the enhanced safety, featuring nonflammable solid electrolytes as well as the potential to achieve high energy density. 1 The advancement of the ASSBs is expected to provide, arguably, the most straightforward path towards practical, high-energy, and rechargeable batteries based on metallic anodes. 1 However, the sluggish ion transmission at the cathode-electrolyte (solid/solid) interface would result in the high resistant at the contact and limit the practical implementation of these all solid-state materials in real world batteries. 2 Several methods were suggested to enhance the kinetic condition of the ion migration between the cathode and the solid electrolyte (SE). 3 A composite strategy that mixes active materials and SEs for the cathode is a general way to decrease the ion transmission barrier at the cathode-electrolyte interface. 3 The active material concentration in the cathode is reduced as much as the SE portion increases by which the energy density of the ASSB is restricted. In addition, the mixing approach generally accompanies lattice mismatches between the cathode active materials and the SE, thus providing only limited improvements, which is imputed by random contacts between the cathode active materials and the SE during the mixing process. Implementing high-pressure for the electrode and electrolyte of ASSB in the assembling process has been verified is a but effective way to boost the ion transmission ability between the cathode active materials and the SE by decreasing the grain boundary impedance. Whereas the short-circuit of the battery would be induced by the mechanical deformation of the electrolyte under high pressure. 4 Herein, we demonstrate a novel way to address the ion transmission problem at the cathode-electrolyte interface in ASSBs. Starting from the cathode configuration, the finite element method (FEM) was employed to evaluate the current concentration and the distribution of the space charge layer at the cathode-electrolyte interface. Hierarchical three-dimensional (HTD) structures are found to have a higher Li + transfer number (t Li+ ), fewer free anions, and the weaker space-charge layer at the cathode-electrolyte interface in the resulting FEM simulation. To take advantage of the HTD structure, stereolithography is adopted as a manufacturing technique and single-crystalline Ni-rich (SCN) materials are selected as the active materials. Next, the manufactured HTD cathode is sintered at 600 °C in an N 2 atmosphere for the carbonization of the resin, which induces sufficient electronic conductivity for the cathode. Then, the gel-like Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 (LATP) precursor is synthesized and filled into the voids of the HTD structure cathode sufficiently. And the filled HTD structure cathodes are sintered at 900 °C to achieve the crystallization of the LATP gel. Scanning transmission electron microscopy (STEM) is used to unveil the morphology of the cathode-electrolyte interface between the sintered HTD cathode and the in-situ generated electrolyte (LATP). A transient phase has been found generated at the interface and matched with both lattices of the SCN and the SE, accelerating the transmission of the Li-ions, which is further verified by density functional theory calculations. In addition, Electron Energy Loss Spectroscopy demonstrates the preserved interface between HTD cathode and SEs. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than the sample that mix SCN and SEs simply in the 2D planar structure, which confirms a weakened space charge layer by the enhanced contact capability as well as the ion transmission ability. To see if the demonstrated method is universally applicable, LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) is selected as the cathode active material and manufactured in the same way as the SCN. The HTD cathode based on NCM811 exhibits higher electrochemical performance compared with the reference sample based on the 2D planar mixing-type cathode. We believe such a demonstrated universal strategy provides a new guideline to engineer the cathode/electrolyte interface by revolutionizing electrode structures that can be applicable to all-solid-state batteries. Figure 1. Schematic of comparing of traditional 2D planar cathode and HTD cathode in ASSB Tikekar, M. D. , et al. , Nature Energy (2016) 1 (9), 16114 Banerjee, A. , et al. , Chem Rev (2020) 120 (14), 6878 Chen, R. , et al. , Chem Rev (2020) 120 (14), 6820 Cheng, X. , et al. , Advanced Energy Materials (2018) 8 (7) Figure 1 
    more » « less
  4. Abstract

    MXenes are a rapidly growing family of 2D transition metal carbides and nitrides that are promising for various applications, including energy storage and conversion, electronics, and healthcare. Hydrofluoric‐acid‐based etchants are typically used for large‐scale and high‐throughput synthesis of MXenes, which also leads to a mixture of surface terminations that impede MXene properties. Herein, a computational thermodynamic model with experimental validation is presented to explore the feasibility of fluorine‐free synthesis of MXenes with uniform surface terminations by dry selective extraction (DSE) from precursor MAX phases using iodine vapors. A range of MXenes and respective precursor compositions are systematically screened using first‐principles calculations to find candidates with high phase stability and low etching energy. A thermodynamic model based on the “CALculation of PHAse Diagrams” (CALPHAD) approach is further demonstrated, using Ti3C2I2as an example, to assess the Gibbs free energy of the DSE reaction and the state of the byproducts as a function of temperature and pressure. Based on the assessment, the optimal synthesis temperature and vapor pressure are predicted and further verified by experiments. This work opens an avenue for scalable, fluorine‐free dry synthesis of MXenes with compositions and surface chemistries that are not accessible using wet chemical etching.

    more » « less
  5. Abstract

    MXenes, a family of 2D transition‐metal carbides and nitrides, have excellent electrical conductivity and unique optical properties. However, MXenes oxidize in ambient conditions, which is accelerated upon heating. Intercalation of water also causes hydrolysis accelerating oxidation. Developing new tools to readily characterize MXenes’ thermal stability can enable deeper insights into their structure–property relationships. Here, in situ spectroscopic ellipsometry (SE) is employed to characterize the optical properties of three types of MXenes (Ti3C2Tx, Mo2TiC2Tx, and Ti2CTx) with varied composition and atomistic structures to investigate their thermal degradation upon heating under ambient environment. It is demonstrated that changes in MXene extinction and optical conductivity in the visible and near‐IR regions correlate well with the amount of intercalated water and hydroxyl termination groups and the degree of oxidation, measured using thermogravimetric analysis. Among the three MXenes, Ti3C2Txand Ti2CTx, respectively, have the highest and lowest thermal stability, indicating the role of transition‐metal type, synthesis route, and the number of atomic layers in MXene flakes. These findings demonstrate the utility of SE as a powerful in situ technique for rapid structure–property relationship studies paving the way for the further design, fabrication, and property optimization of novel MXene materials.

    more » « less