skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Disturbances drive changes in coral community assemblages and coral calcification capacity
Abstract

Anthropogenic environmental change has increased coral reef disturbance regimes in recent decades, altering the structure and function of many coral reefs globally. In this study, we used coral community survey data collected from 1996 to 2015 to evaluate reef‐scale coral calcification capacity (CCC) dynamics with respect to recorded pulse disturbances for 121 reef sites in the Main Hawaiian Islands and Mo'orea (French Polynesia) in the Pacific and the Florida Keys Reef Tract and St. John (U.S. Virgin Islands) in the western Atlantic. CCC remained relatively high in the Main Hawaiian Islands in the absence of recorded widespread disturbances; declined and subsequently recovered in Mo'orea following a crown‐of‐thorns sea star outbreak, coral bleaching, and major cyclone; decreased and remained low following coral bleaching in the Florida Keys Reef Tract; and decreased following coral bleaching and disease in St. John. Individual coral taxa have variable calcification rates and susceptibility to disturbances because of their differing life‐history strategies. As a result, temporal changes in CCC in this study were driven by shifts in both overall coral cover and coral community composition. Analysis of our results considering coral life‐history strategies showed that weedy corals generally increased their contributions to CCC over time while the contribution of competitive corals decreased. Shifts in contributions by stress‐tolerant and generalist corals to CCC were more variable across regions. The increasing frequency and intensity of disturbances under 21st century global change therefore has the potential to drive lower and more variable CCC because of the increasing dominance of weedy and some stress‐tolerant corals.

 
more » « less
NSF-PAR ID:
10457922
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
11
Issue:
4
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over recent decades, many Caribbean reefs have transitioned to states where stony corals are no longer spatially dominant. The community dynamics culminating in this outcome are well known, but its functional implications remain incompletely understood. Here we used annual surveys from 1992 to 2019 to describe coral communities at 6 sites off St. John, US Virgin Islands, and explored how their ecological dynamics interact with their capacity to sustain estimated coral community calcification (G, kg CaCO 3 m -2 yr -1 ). These communities had low coral cover (≤4.4%), but they changed through small and incremental events that summed to a slight decline in coral cover and changes in species assemblages favoring biotic homogenization and weedy species. Estimated coral G remained low, between 0.3 and 1.3 kg CaCO 3 m -2 yr -1 (8.2-35.6 mmol CaCO 3 m -2 d -1 ), but it differed among sites and years. The dominant contributors to G were Siderastrea siderea (1 site), Porites astreoides (1 site), and Orbicella spp. (4 sites), but higher G only occurred where Orbicella spp. remained relatively common; G dramatically declined at 1 site when the abundance of this genus decreased. These results suggest that some coral-depleted reefs may maintain low G that could be sufficient to avoid transitions into net negative budget states, provided that biological and physical erosion and dissolution of CaCO 3 (not recorded here) are minimal. Further mortalities of the few coral species remaining on these reefs through disturbances like stony coral tissue loss disease would compromise this delicate production-erosion balance, and likely see transitions of such reefs into negative carbonate budget states. 
    more » « less
  2. null (Ed.)
    The staghorn coral was once prevalent throughout the Florida Reef Tract. However, the last few decades have seen a substantial reduction in the coral population because of disease outbreaks and increasing ocean temperatures. The staghorn coral shows no evidence of natural recovery, and so has been the focus of restoration efforts throughout much of the Florida region. Why put the time and effort into growing corals that are unlikely to survive within environmental conditions that continue to deteriorate? One reason is that the genetic make-up – the genotype – of some corals makes them more resilient to certain threats. However, there could be tradeoffs associated with these resilient traits. For example, a coral may be able to tolerate heat, but may easily succumb to disease. Previous studies have identified some staghorn coral genotypes that are resistant to an infection called white-band disease. The influence of high water temperatures on the ability of the coral to resist this disease was not known. There also remained the possibility that more varieties of coral might show similar disease resistance. To investigate Muller et al. conducted two experiments exposing staghorn coral genotypes to white-band diseased tissue before and during a coral bleaching event. Approximately 25% of the population of staghorn tested was resistant to white-band disease before the bleaching event. When the corals were exposed to white-band disease during bleaching, twice as much of the coral died. Two out of the 15, or 13%, of the coral genotypes tested were resistant to the disease even while bleached. Additionally, the level of bleaching within the coral genotypes was not related to how easily they developed white-band disease, suggesting that there are no direct tradeoffs between heat tolerance and disease resistance. These results suggest that there are very hardy corals, created by nature, already in existence. Incorporating these traits thoughtfully into coral restoration plans may increase the likelihood of population-based recovery. The Florida Reef Tract is estimated to be worth over six billion dollars to the state economy, providing over 70,000 jobs and attracting millions of tourists into Florida each year. However, much of these ecosystem services will be lost if living coral is not restored within the reef tract. The results presented by Muller et al. emphasize the need for maintaining high genetic diversity while increasing resiliency when restoring coral. They also emphasize that disease resistant corals, even when bleached, already exist and may be an integral part of the recovery of Florida’s reef tract. 
    more » « less
  3. Abstract Mesophotic reefs (30‐150 m) have been proposed as potential refugia that facilitate the recovery of degraded shallow reefs following acute disturbances such as coral bleaching and disease. However, because of the technical difficulty of collecting samples, the connectivity of adjacent mesophotic reefs is relatively unknown compared with shallower counterparts. We used genotyping by sequencing to assess fine‐scale genetic structure of Montastraea cavernosa at two sites at Pulley Ridge, a mesophotic coral reef ecosystem in the Gulf of Mexico, and downstream sites along the Florida Reef Tract. We found differentiation between reefs at Pulley Ridge (~68 m) and corals at downstream upper mesophotic depths in the Dry Tortugas (28–36 m) and shallow reefs in the northern Florida Keys (Key Biscayne, ~5 m). The spatial endpoints of our study were distinct, with the Dry Tortugas as a genetic intermediate. Most striking were differences in population structure among northern and southern sites at Pulley Ridge that were separated by just 12km. Unique patterns of clonality and outlier loci allele frequency support these sites as different populations and suggest that the long‐distance horizontal connectivity typical of shallow‐water corals may not be typical for mesophotic systems in Florida and the Gulf of Mexico. We hypothesize that this may be due to the spawning of buoyant gametes, which commits propagules to the surface, resulting in greater dispersal and lower connectivity than typically found between nearby shallow sites. Differences in population structure over small spatial scales suggest that demographic constraints and/or environmental disturbances may be more variable in space and time on mesophotic reefs compared with their shallow‐water counterparts. 
    more » « less
  4. null (Ed.)
    Stony coral tissue loss disease (SCTLD) was first observed in the United States Virgin Islands in January 2019 on a reef at Flat Cay off the island of St. Thomas. A year after its emergence, the disease had spread to several reefs around St. Thomas causing significant declines in overall coral cover. Rates of tissue loss are an important metric in the study of coral disease ecology, as they can inform many aspects of etiology such as disease susceptibility and resistance among species, and provide critical parameters for modeling the effects of disease among heterogenous reef communities. The present study quantified tissue loss rates attributed to SCTLD among six abundant reef building species ( Colpophyllia natans, Montastraea cavernosa, Diploria labyrinthiformis, Pseudodiploria strigosa, Orbicella annularis , and Porites astreoides ). Field-based 3D models of diseased corals, taken approximately weekly, indicated that the absolute rates of tissue loss from SCTLD slowed through time, corresponding with the accumulation of thermal stress that led to mass bleaching. Absolute tissue loss rates were comparable among species prior to the bleaching event but diverged during and remained different after the bleaching event. Proportional tissue loss rates did not vary among species or through time, but there was considerable variability among M. cavernosa colonies. SCTLD poses a significant threat to reefs across the Caribbean due to its persistence through time, wide range of susceptible coral species, and unprecedented tissue loss rates. Intervention and management efforts should be increased during and immediately following thermal stress events in order maximize resource distribution when disease prevalence is decreased. 
    more » « less
  5. Knowlton, N (Ed.)
    In 1983 to 1984, a mass mortality event caused a Caribbean-wide, >95% population reduction of the echinoid grazer, Diadema antillarum . This led to blooms of algae contributing to the devastation of scleractinian coral populations. Since then, D. antillarum exhibited only limited and patchy population recovery in shallow water, and in 2022 was struck by a second mass mortality reported over many reef localities in the Caribbean. Half-a-century time-series analyses of populations of this sea urchin from St. John, US Virgin Islands, reveal that the 2022 event has reduced population densities by 98.00% compared to 2021, and by 99.96% compared to 1983. In 2021, coral cover throughout the Caribbean was approaching the lowest values recorded in modern times. However, prior to 2022, locations with small aggregations of D. antillarum produced grazing halos in which weedy corals were able to successfully recruit and become the dominant coral taxa. The 2022 mortality has eliminated these algal-free halos on St. John and perhaps many other regions, thereby increasing the risk that these reefs will further transition into coral-free communities. 
    more » « less