Establishing tropical sea surface temperature (SST) during the Last Glacial Maximum (LGM) is important for constraining equilibrium climate sensitivity to radiative forcing. Until now, there has been little data from the central equatorial Pacific in global compilations, with foraminiferal assemblage‐based estimates suggesting the region was within 1°C of modern temperatures during the LGM. This is in stark contrast to multi‐proxy evidence from the eastern and western Pacific and model simulations which support larger cooling. Here we present the first estimates of glacial SST in the central equatorial Pacific from Mg/Ca in
El Niño Southern Oscillation (ENSO) is the largest source of interannual climate variability on Earth today; however, future ENSO remains difficult to predict. Evaluation of paleo‐ENSO may help improve our basic understanding of the phenomenon and help resolve discrepancies among models tasked with simulating future climate. Individual foraminifera analysis allows continuous down‐core records of ENSO‐related temperature variability through the construction and comparison of paleotemperature distributions; however, there has been little focus on calibrating this technique to modern conditions. Here, we present data from individual measurements of Mg/Ca in two species of planktic foraminifera, surface dwelling
- PAR ID:
- 10457936
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 35
- Issue:
- 2
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Globigerinoides ruber . Our results show that the central Pacific cooled by about 2.0°C during the LGM, in contrast with previous global compilations but in agreement with models. Our data support a larger magnitude of tropical LGM cooling, and thus a larger equilibrium climate sensitivity, than previous studies which relied on foraminiferal assemblages in the central tropical Pacific. -
ABSTRACT The trace element composition of planktic foraminifera shells is influenced by both environmental and biological factors (‘vital effects’). As trace elements in individual foraminifera shells are increasingly used as paleoceanographic tools, understanding how trace element ratios vary between individuals, among species, and in response to high frequency environmental variability is of critical importance. Here, we present a three-year plankton tow record (2010–2012) of individual shell trace element (Mg, Sr, Ba, and Mn) to Ca ratios in the planktic species Globigerina ruber (pink), Orbulina universa, and Globorotalia menardii collected throughout the upper 100 m of Cariaco Basin. Plankton tows were paired with in situ measurements of water column chemistry and hydrography. The Mg/Ca ratio reflects different calcification temperatures in all three species when calculated using species-specific temperature relationships from single-species averages of Mg/Ca. However, individual shell Mg/Ca often results in unrealistic temperate estimates. The Sr/Ca ratios are relatively constant among the four species. Ratios of Mn/Ca and Ba/Ca are highest in G. menardii and are not reflective of elemental concentrations in open waters. The Mn/Ca ratio is elevated in all species during upwelling conditions, and a similar trend is demonstrated in Neogloboquadrina incompta shells from the California margin collected during upwelling periods. Together this suggests that elevated shell Mn/Ca may act as a tracer for upwelling of deeper water masses. Our results emphasize the large degree of trace element variability present among and within species living within a limited depth habitat and the roles of biology, calcification environment, and physical mixing in mediating how trace element geochemistry reflects environmental variability in the surface ocean.more » « less
-
Abstract The Western Equatorial Pacific (WEP) warm pool, with surface temperatures >28
° C and a deep thermocline, is an important source of latent and sensible heat for the global climate system. Because the tropics are not sensitive to ice‐albedo feedbacks, the WEP's response to radiative forcing can be used to constrain a minimum estimate of Earth system sensitivity. Climate modeling ofp CO2‐radiative warming projections shows little change in WEP variability; here we use temperature distributions of individual surface and subsurface dwelling fossil foraminifera to evaluate past variability and possible radiative and dynamic climate forcing over the Plio‐Pleistocene. We investigate WEP warm pool variability within paired glacial‐interglacial (G‐IG) intervals for four times: the Holocene‐Last Glacial Maximum, ~2, ~3, and ~4 Ma. Our results show that these surface and subsurface temperature distributions are similar for all G‐IG pairs, indicating no change in variability, even asp CO2‐radiative forcing and other boundary conditions changed on G‐IG timescales. Plio‐Pleistocene sea surface temperature (SST) distributions are similar to those from the Holocene, indicating WEP SSTs respond top CO2‐radiative forcing and associated feedbacks. In contrast, Plio‐Pleistocene subsurface temperature distributions suggest subsurface temperatures respond to changes in thermocline temperature and depth. We estimate tropical temperature sensitivity for the mid‐Pliocene (~3 Ma) using our individual foraminifera SST data set and a previously published high‐resolution boron isotope‐basedp CO2reconstruction. We find tropical temperature sensitivity was equal to, or less than, that of the Late Pleistocene. -
Abstract Coral Sr/Ca records have been widely used to reconstruct and understand past sea surface temperature (SST) variability in the tropical Pacific. However, in the eastern equatorial Pacific, coral growth conditions are marginal, and strong El Niño events have led to high mortality, limiting opportunities for coral Sr/Ca‐based SST reconstructions. In this study, we present two ∼25‐year Sr/Ca and Mg/Ca records measured on modern
Porites lobata from Wolf and Darwin Islands in the northern Galápagos. In these records, we confirm the well‐established relationship between Sr/Ca and SST and investigate the impact of heat stress on this relationship. We demonstrate a weakened relationship between Sr/Ca and SST after a major (Degree Heating Months 9°C‐months) heat stress event during the 1997–1998 El Niño, with a larger response in the Wolf core. However, removing data that covers the 1997–1998 El Niño from calibration does not improve reconstruction statistics. Nevertheless, we find that excluding dataafter the 1997–1998 El Niño event from the calibration reduces the SST reconstruction error slightly. These results confirm that coral Sr/Ca is a reliable SST proxy in this region, although it can respond adversely to unusual heat stress. We suggest that noise in Sr/Ca‐SST calibrations may be reduced by removing data immediately following large heat extremes. -
Abstract A controversial aspect of Pliocene (5.3–2.6 Ma) climate is whether El Niño‐like (El Padre) conditions, characterized by a reduced trans‐equatorial sea‐surface temperature (SST) gradient, prevailed across the Pacific. Evidence for El Padre is chiefly based on reconstructions of sea‐surface conditions derived from the oxygen isotope (δ18O) and Mg/Ca compositions of shells belonging to the planktic foraminifer
Trilobatus sacculifer . However, fossil shells of this species are a mixture of multiple carbonate phases—pre‐gametogenic, gametogenic (reproductive), and diagenetic calcites—that formed under different physiological and/or environmental conditions and are averaged in conventional whole‐shell analyses. Through in situ measurements of micrometer‐scale domains within Pliocene‐aged shells ofT. sacculifer from Ocean Drilling Program Site 806 in the western equatorial Pacific, we show that the δ18O of gametogenic calcite is 0.6–0.8‰ higher than pre‐gametogenic calcite, while the Mg/Ca ratios of these two phases are the same. Both the whole‐shell and pre‐gametogenic Mg/Ca records indicate that average early Pliocene SSTs were ~1°C warmer than modern, with present‐day SSTs being established during the latest Pliocene and early Pleistocene (~3.0–2.0 Ma). The measurement of multiple calcite phases by whole‐shell δ18O analyses masks a late Pliocene to earliest Pleistocene (3.6–2.2 Ma) decrease in seawater δ18O (δ18Osw) values reconstructed from in situ pre‐gametogenic δ18O and Mg/Ca measurements. Our novel δ18Oswrecord indicates that sea‐surface salinities in the west Pacific warm pool were higher than modern prior to ~3.5 Ma, which is consistent with more arid conditions under an El Padre state.