Relative to all other primates, the aye‐aye (
The masticatory apparatus has been the focus of many studies in comparative anatomy—especially analyses of skulls and teeth, but also of the mandibular adductor muscles which are responsible for the production of bite force and the movements of the mandible during food processing and transport. The fiber architecture of these muscles has been correlated to specific diets (e.g., prey size in felids) and modes of foraging (e.g., tree gouging in marmosets). Despite the well‐elucidated functional implications of this architecture, little is known about its ontogeny. To characterize age‐related myological changes, we studied the masticatory muscles in a large (
- PAR ID:
- 10458017
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- The Anatomical Record
- Volume:
- 303
- Issue:
- 5
- ISSN:
- 1932-8486
- Page Range / eLocation ID:
- p. 1364-1373
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Daubentonia madagascariensis ) exists at the extremes of both morphology and behavior. Its specialized anatomy—which includes hypselodont incisors and highly derived manual digits—reflects a dietary niche, unique among primates, which combines tap‐foraging with gouging to locate and extract wood‐boring larvae. Here, we explore the impact of this extreme dietary ecology upon the masticatory musculature of this taxon with reference to a second, similarly sized but highly generalist lemuriform—the mongoose lemur (Eulemur mongoz ). Using non‐destructive, high‐resolution diffusible iodine‐based contrast‐enhanced computed tomography techniques, we reconstruct the three‐dimensional volumes of eight masticatory muscles, and, for the first time in strepsirrhines, isolate and visualize their constituent muscle fasciclesin situ and in three dimensions. Using these data, we report muscle volumes, forces, and fascicle lengths from each muscle portion, as well as their orientation relative to two standardized anatomical planes. Our findings demonstrate the overbuilt nature of the aye‐aye's masticatory apparatus, in which each muscle possesses an absolutely and relatively larger muscle volume and PCSA than its counterpart in the mongoose lemur. Likewise, for several adductor muscles, aye‐ayes also possess relatively greater fascicle lengths. Finally, we note several unusual features within the lateral pterygoid of the aye‐aye—the muscle most responsible for jaw protrusion—that relate to force maximization and reorientation. As this jaw motion is critical to gouging, we interpret these differences to reflect highly specific specializations that facilitate the aye‐aye's extreme subsistence strategy. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:282–294, 2020. © 2019 American Association for Anatomy -
Abstract Quantitative functional anatomy of amniote thoracic and abdominal regions is crucial to understanding constraints on and adaptations for facilitating simultaneous breathing and locomotion. Crocodilians have diverse locomotor modes and variable breathing mechanics facilitated by basal and derived (accessory) muscles. However, the inherent flexibility of these systems is not well studied, and the functional specialisation of the crocodilian trunk is yet to be investigated. Increases in body size and trunk stiffness would be expected to cause a disproportionate increase in muscle force demands and therefore constrain the basal costal aspiration mechanism, necessitating changes in respiratory mechanics. Here, we describe the anatomy of the trunk muscles, their properties that determine muscle performance (mass, length and physiological cross‐sectional area [PCSA]) and investigate their scaling in juvenile
Alligator mississippiensis spanning an order of magnitude in body mass (359 g–5.5 kg). Comparatively, the expiratory muscles (transversus abdominis ,rectus abdominis ,iliocostalis ), which compress the trunk, have greater relative PCSA being specialised for greater force‐generating capacity, while the inspiratory muscles (diaphragmaticus ,truncocaudalis ischiotruncus ,ischiopubis ), which create negative internal pressure, have greater relative fascicle lengths, being adapted for greater working range and contraction velocity. Fascicle lengths of the accessorydiaphragmaticus scaled with positive allometry in the alligators examined, enhancing contractile capacity, in line with this muscle's ability to modulate both tidal volume and breathing frequency in response to energetic demand during terrestrial locomotion. Theiliocostalis , an accessory expiratory muscle, also demonstrated positive allometry in fascicle lengths and mass. All accessory muscles of the infrapubic abdominal wall demonstrated positive allometry in PCSA, which would enhance their force‐generating capacity. Conversely, the basal tetrapod expiratory pump (transversus abdominis ) scaled isometrically, which may indicate a decreased reliance on this muscle with ontogeny. Collectively, these findings would support existing anecdotal evidence that crocodilians shift their breathing mechanics as they increase in size. Furthermore, the functional specialisation of thediaphragmaticus and compliance of the body wall in the lumbar region against which it works may contribute to low‐cost breathing in crocodilians. -
ABSTRACT The organization and length of a muscle's fascicles imparts its contractile properties. Longer fascicles permit increased muscle excursion, whereas changes in fascicle orientation relate to the overall vector of contractile force. Collecting data on fascicle architecture has traditionally involved destructive and irreversible gross dissection. In recent years, however, new imaging modalities have permitted muscles and their fascicles to be visualized nondestructively. Here, we present data from a primate (
Callithrix jacchus ), in which, for the first time, individual muscle fascicles are digitally “dissected” (segmented and reconstructed) using nondestructive, high‐resolution diffusible iodine‐based contrast‐enhanced computed tomography (DiceCT) techniques. We also present quantitative data on the length and orientation of these fascicles within 10 muscle divisions of the jaw adductor and abductor musculature (superficial, deep, and zygomatic portions of temporalis and masseter; medial and lateral pterygoid; anterior and posterior digastric) and compare these digitally measured lengths to fascicular lengths measured using traditional gross and chemical dissection. Digitally derived fascicle lengths correspond well to their dissection‐derived counterparts. Moreover, our analyses of changes in fascicle orientation across the adductor complex enable us to visualize previously uncharacterized levels of detail and highlight significant variation between adjacent muscle layers within muscle groups (e.g., between superficial, deep, and zygomatic portions of masseter and temporalis). We conclude that this technique offers great potential to future research, particularly for questions centered around the visualization and quantification of obscured and often‐overlooked muscles such as the pterygoid and digastric muscles, and for deriving more accurate models of the masticatory system as a whole. Anat Rec, 302:1891–1900, 2019. © 2019 American Association for Anatomy -
ABSTRACT Although studies have sought to characterize variation in forearm muscular anatomy across the primate order, none have attempted to quantify ontogenetic changes in forearm myology within a single taxon. Herein, we present muscle architecture data for the forearm musculature (flexors and extensors of the wrist and digits) of
Microcebus murinus , a small Lemuroid that has been the focus of several developmental studies. A quadratic curvilinear model described ontogenetic changes in muscle mass and fascicle length; however, fascicle lengths reached peak levels at an earlier age and showed a stronger decline during senescence. Conversely, physiological cross‐sectional area followed a more linear trend, increasing steadily throughout life. As previous studies into the functional role of the primate forelimb emphasize the importance of long muscle fascicles within arboreal taxa in order to maximize mobility and flexibility, the early attainment of peak fascicle lengths may consequently reflect the importance of agility within this mobile and highly arboreal species. Similarly, observed myological trends in forearm strength are supported by previousin vivo data on grip strength withinM. murinus in which senescent individuals showed no decline in forearm force relative to prime age individuals. This trend is interpreted to reflect compensation for the previously reported decline in hind limb grip strength in the hind limb with age, such that older individuals are able to maintain arboreal stability. Interestingly, the ontogenetic trajectory of each architectural variable mirrored previous observations of the masticatory musculature inM. murinus , suggesting that ontogenetic trends are relatively conserved between anatomical regions. Anat Rec, 303:1354–1363, 2020. © 2019 American Association for Anatomy -
ABSTRACT Dietary ecology and its relationship with both muscle architecture and bite force potential has been studied in many mammalian (and non‐mammalian) taxa. However, despite the diversity of dietary niches that characterizes the superfamily Musteloidea, the masticatory muscle fiber architecture of its members has yet to be investigated anatomically. In this study, we present myological data from the jaw adductors in combination with biomechanical data derived from craniomandibular measurements for 17 species representing all four families (Ailuridae, Mephitidae, Mustelidae, and Procyonidae) of Musteloid. These data are combined to calculate bite force potential at each of three bite points along the dental row. Across our sample as a whole, masticatory muscle mass scaled with isometry or slight positive allometry against both body mass and skull size (measured via a cranial geometric mean). Total jaw adductor physiological cross‐sectional area scaled with positive allometry against both body mass and skull size, while weighted fiber length scaled with negative allometry. From a dietary perspective, fiber length is strongly correlated with dietary size such that taxa that exploit larger foods demonstrated myological adaptations toward gape maximization. However, no consistent relationship between bite force potential and dietary mechanical resistance was observed. These trends confirm previous findings observed within the carnivoran family Felidae (as well as within primates), suggesting that the mechanisms by which masticatory anatomy adapts to dietary ecology may be more universally consistent than previously recognized. Anat Rec, 302:2287–2299, 2019. © 2019 American Association for Anatomy