skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Loading and Bioavailability of Colloidal Phosphorus in the Estuarine Gradient of the Deer Creek‐Susquehanna River Transect in the Chesapeake Bay
Abstract Phosphorus (P) overloading is a major cause of surface water eutrophication and bottom water hypoxia. The incomplete understanding of different P pools and their corresponding bioavailability in the continuum from sources and sinks has limited the development of appropriate nutrient management strategies. Here we apply multistable isotope proxies to track colloids and identify whether specific P pools in colloids are biologically cycled at the Deer Creek‐Susquehanna River mouth stretch. Results showed that NaOH‐Piis the most dominant P pool in the summer and winter seasons. Oxygen isotope values (δ18OP) of NaOH‐Piand HNO3‐Pipools of different size fractions of colloids are much heavier than the ranges of equilibrium values in the ambient water, which suggest that these two pools are recalcitrant against biological uptake. It further means isotopic signatures of these P pools could be used to identify the sources of colloids. Carbon (C) and nitrogen (N) isotope compositions of colloids showed that the contribution of terrestrial sources gradually decreases downstream of the river toward the bay and Deer Creek contributes disproportionately high amounts of colloids to the Susquehanna River. These findings provide valuable information on the loading of colloids and relative bioavailability of colloidal P pools in estuarine ecosystems.  more » « less
Award ID(s):
1654642
PAR ID:
10458076
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
124
Issue:
12
ISSN:
2169-8953
Page Range / eLocation ID:
p. 3717-3726
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Phosphorus (P) is an essential nutrient for sustaining life and agricultural production. Transformation of readily available P into forms that are unavailable to plants adds costs to P replenishment, which eventually translates into lower agronomic benefits and potential loss of soil P into runoff may degrade water quality. Therefore, understanding the sources and pathways of the formation of residual P pools in soils is useful information needed for the development of any technological or management efforts to minimize or inhibit the formation of such P pool and thus maximize availability to plants. In this research, we paired phosphate oxygen isotope ratios (δ18OP) with solid-state 31P NMR and quantitative XRD techniques along with general soil chemistry methods to identify the precipitation pathways of acid-extracted inorganic P (Pi) pools in an agricultural soil. Based on the comparison of isotope values of 0.5 mol L−1 NaOH-Pi, 1 mol L−1 HCl-Pi, and 10 mol L−1 HNO3-Pi pools and correlations of associated elements (Ca, Fe, and Al) in these pools, the HNO3-Pi pool appears most likely to be transformed from the NaOH-Pi pool. A narrow range of isotope values of acid-Pi pools in shallow (tilling depth) and below (where physical mixing is absent) is intriguing but likely suggests leaching of particle-bound P in deeper soils. Overall, these findings provide an improved understanding of the sources, transport, and transformation of acid-Pi pools in agricultural soils and further insights into the buildup of legacy P in soils. 
    more » « less
  2. Abstract Particle size greatly influences the fate of phosphorus (P) in estuaries as P adheres more readily to the larger surface area in smaller sized particles. Here, data on two size fractions of particulate matter, permanently suspended particulate matter (PSPM, ≤40 μm) and resuspended particulate matter (RSPM, >40 μm), from field and controlled laboratory erosion experiments were analyzed to determine their relative contribution to water column P in the mouth of the Susquehanna River in the upper Chesapeake Bay. Based on the composition of sequentially extracted P pools, C and N isotopes, and elemental data, all PSPM and the majority of RSPM are most likely derived from allochthonous sources through river transport. A minor fraction of particulate matter in the water column was derived from sediment resuspension, which had a dominant role above the sediment‐water interface in the river's mouth. The proportion of biologically available P pools to recalcitrant P pools in suspended particulate matter decreased with water column depth, indicating their preferential removal or biological utilization during settling. Suspended particulate matter (SPM) mobilized during sediment erosion experiments, regardless of particle size, was richer in biologically available P pools than SPM in the field, suggesting higher mobility of these pools in the field. These complementary results from field and field‐simulated laboratory erosion experiments provide unique insights into the composition of particulate matter under different hydrodynamic regimes in the river estuary. 
    more » « less
  3. Abstract The isotopic composition of precipitation is used to trace water cycling and climate change, but interpretations of the environmental information recorded in central Andean precipitation isotope ratios are hindered by a lack of multi‐year records, poor spatial distribution of observations, and a predominant focus on Rayleigh distillation. To better understand isotopic variability in central Andean precipitation, we present a three‐year record of semimonthly δ18Opand δ2Hpvalues from 15 stations in southern Peru and triple oxygen isotope data, expressed as ∆′17Op, from 32 precipitation samples. Consistent with previous work, we find that elevation correlates negatively with δ18Opand that seasonal δ18Opvariations are related to upstream rainout and local convection. Spatial δ18Opvariations and atmospheric back trajectories show that both eastern‐ and western‐derived air masses bring precipitation to southern Peru. Seasonal d‐excesspcycles record moisture recycling and relative humidity at remote moisture sources, and both d‐excesspand ∆′17Opclearly differentiate evaporated and non‐evaporated samples. These results begin to establish the natural range of unevaporated ∆′17Opvalues in the central Andes and set the foundation for future paleoclimate and paleoaltimetry studies in the region. This study highlights the hydrologic understanding that comes from a combination of δ18Op, d‐excessp, and ∆′17Opdata and helps identify the evaporation, recycling, and rainout processes that drive water cycling in the central Andes. 
    more » « less
  4. Abstract Increased use and improved methodology of carbonate clumped isotope thermometry has greatly enhanced our ability to interrogate a suite of Earth‐system processes. However, interlaboratory discrepancies in quantifying carbonate clumped isotope (Δ47) measurements persist, and their specific sources remain unclear. To address interlaboratory differences, we first provide consensus values from the clumped isotope community for four carbonate standards relative to heated and equilibrated gases with 1,819 individual analyses from 10 laboratories. Then we analyzed the four carbonate standards along with three additional standards, spanning a broad range of δ47and Δ47values, for a total of 5,329 analyses on 25 individual mass spectrometers from 22 different laboratories. Treating three of the materials as known standards and the other four as unknowns, we find that the use of carbonate reference materials is a robust method for standardization that yields interlaboratory discrepancies entirely consistent with intralaboratory analytical uncertainties. Carbonate reference materials, along with measurement and data processing practices described herein, provide the carbonate clumped isotope community with a robust approach to achieve interlaboratory agreement as we continue to use and improve this powerful geochemical tool. We propose that carbonate clumped isotope data normalized to the carbonate reference materials described in this publication should be reported as Δ47(I‐CDES) values for Intercarb‐Carbon Dioxide Equilibrium Scale. 
    more » « less
  5. Abstract Oceanic trenches are an important sink for organic matter (OM). However, little is known about how much of the OM reaching the hadal region derives from the sunlit surface ocean and other sources. We provide new insight into the OM sources in the Atacama Trench by examining the elemental and stable isotope composition of carbon and nitrogen in bulk OM throughout the entire water column and down to bathyal and hadal sediments. Moreover, we estimated the particulate organic carbon (POC) concentration and downward carbon flux. Our results, based on two‐way variance analysis, showed statistical differences in δ15NPONbetween the epipelagic zone and the deep zones. However, no statistical differences in δ13CPOCand C:N ratio between hadalpelagic and shallower pelagic zones were found, except for δ13CPOCin the oxygen‐deficient zone. On the contrary, whereas the isotopic signatures of hadal sediments were distinct from those over the entire water column, they were similar to the values in bathyal sediments. Thus, our results suggest that bathyal sediments could contribute more OM to hadal sediments than the different zones of the water column. Indeed, whereas POC flux estimates derived from remote sensing data indicate that ∼16%–27% of POC could evade surface remineralization within the top 200 m and potentially be exported to depths beyond the mesopelagic region, model estimates suggest that ∼3.3% of it could reach hadal depths. Our results provide a quantitative baseline of pelagic‐benthic coupling which can aid in assessment of carbon cycling changes in future climate scenarios. 
    more » « less