skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Nutrient addition increases grassland sensitivity to droughts
Abstract

Grasslands worldwide are expected to experience an increase in extreme events such as drought, along with simultaneous increases in mineral nutrient inputs as a result of human industrial activities. These changes are likely to interact because elevated nutrient inputs may alter plant diversity and increase the sensitivity to droughts. Dividing a system’s sensitivity to drought into resistance to change during the drought and rate of recovery after the drought generates insights into different dimensions of the system’s resilience in the face of drought. Here, we examine the effects of experimental nutrient fertilization and the resulting diversity loss on the resistance to and recovery from severe regional droughts. We do this at 13 North American sites spanning gradients of aridity, five annual grasslands in California, and eight perennial grasslands in the Great Plains. We measured rate of resistance as the change in annual aboveground biomass (ANPP) per unit change in growing season precipitation as conditions declined from normal to drought. We measured recovery as the change in ANPP during the postdrought period and the return to normal precipitation. Resistance and recovery did not vary across the 400‐mm range of mean growing season precipitation spanned by our sites in the Great Plains. However, chronic nutrient fertilization in the Great Plains reduced drought resistance and increased drought recovery. In the California annual grasslands, arid sites had a greater recovery postdrought than mesic sites, and nutrient addition had no consistent effects on resistance or recovery. Across all study sites, we found that predrought species richness in natural grasslands was not consistently associated with rates of resistance to or recovery from the drought, in contrast to earlier findings from experimentally assembled grassland communities. Taken together, these results suggest that human‐induced eutrophication may destabilize grassland primary production, but the effects of this may vary across regions and flora, especially between perennial and annual‐dominated grasslands.

 
more » « less
Award ID(s):
1831944
PAR ID:
10458084
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
5
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Asexual reproduction plays a fundamental role in the structure, dynamics and persistence of perennial grasslands. Thus, assessing how asexual reproductive traits of plant communities respond to drought may be key for understanding grassland resistance to drought and recovery following drought.

    Here, we quantified three asexual reproductive traits (i.e. above‐ground tiller abundance, below‐ground bud abundance and the ratio of tillers to buds) during a 4‐year severe drought and a 2‐year drought recovery period in four grasslands that spanned an aridity gradient in northern China. We also assessed the relationship between these traits and the resistance and recovery of above‐ground net primary productivity (ANPP).

    We found that drought had limited and largely inconsistent effects on asexual reproduction among drought and recovery years and grasslands overall. Drought increased tiller abundance in the first treatment year and reduced bud banks by the fourth treatment year across grasslands. However, neither of the three asexual reproductive traits were correlated with drought resistance of ANPP. Drought legacies differed among the four grasslands with positive, negative and no legacies evident for the three asexual reproductive traits, and no clear relationship with aridity. Bud banks and tiller to bud ratio decreased and increased, respectively, in the first recovery year, but not in the second recovery year. In contrast to drought resistance, community bud abundance was strongly related to recovery, such that communities with higher bud abundance had greater ANPP recovery following drought.

    Synthesis. These results suggest that asexual reproductive traits may be important drivers of ecosystem recovery after drought, but that variable responses of these asexual reproduction traits during drought complicates predictions of overall grassland responses.

     
    more » « less
  2. Abstract

    Seeds provide the basis of genetic diversity in perennial grassland communities and their traits may influence ecosystem resistance to extreme drought. However, we know little about how drought effects the community functional composition of seed traits and the corresponding implications for ecosystem resistance to drought.

    We experimentally removed 66% of growing season precipitation for 4 years across five arid and semi‐arid grasslands in northern China and assessed how this multi‐year drought impacted community‐weighted means (CWMs) of seed traits, seed trait functional diversity and above‐ground net primary productivity (ANPP).

    Experimental drought had limited effects on CWM traits and the few effects that did occur varied by site and year. For three separate sites, and in different years, drought reduced seed length and phosphorus content but increased both seed and seed‐coat thickness. Additionally, drought led to increased seed functional evenness, divergence, dispersion and richness, but only in some sites, and mostly in later years following cumulative effects of water limitation. However, we observed a strong negative relationship between drought‐induced reductions in ANPP and CWMs of seed‐coat thickness, indicating that a high abundance of dominant species with thick seeds may increase ecosystem resistance to drought. Seed trait functional diversity was not significantly predictive of ANPP, providing little evidence for a diversity effect.

    Our results suggest that monitoring community composition with a focus on seed traits may provide a valuable indicator of ecosystem resistance to future droughts despite inconsistent responses of seed trait composition overall. This highlights the importance of developing a comprehensive seed and reproductive traits database for arid and semi‐arid grassland biomes.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Abstract

    Climatic extremes, such as severe drought, are expected to increase in frequency and magnitude with climate change. Thus, identifying mechanisms of resilience is critical to predicting the vulnerability of ecosystems. An exceptional drought ( 

    more » « less
  4. Abstract

    Recurrent droughts are an inevitable consequence of climate change, yet how grasslands respond to such events is unclear. We conducted a 6‐year rainfall manipulation experiment in a semiarid grassland that consisted of an initial 2‐year drought (2015–2016), followed by a recovery period (2017–2018) and, finally, a second 2‐year drought (2019–2020). In each year, we estimated aboveground net primary productivity (ANPP), species richness, community‐weighted mean (CWM) plant traits, and several indices of functional diversity. The initial drought led to reduced ANPP, which was primarily driven by limited growth of forbs in the first year and grasses in the second year. Total ANPP completely recovered as the rapid recovery of grass productivity compensated for the slow recovery of forb productivity. The subsequent drought led to a greater reduction in total ANPP than the initial drought due to the greater decline of both grass and forb productivity. The structural equation models revealed that soil moisture influenced ANPP responses directly during the initial drought, and indirectly during the subsequent drought by lowering functional diversity, which resulted in reduced total ANPP. Additionally, ANPP was positively influenced by CWM plant height and leaf nitrogen during the recovery period and recurrent drought, respectively. Overall, the greater impact of the second drought on ecosystem function than the initial drought, as well as the underlying differential mechanism, underscores the need for an understanding of how increased drought frequency may alter semiarid grassland functioning.

     
    more » « less
  5. Abstract

    Grasslands are expected to experience droughts of unprecedented frequency and magnitude in the future. Characterizing grassland responses and recovery from drought is therefore critical to predict the vulnerability of grassland ecosystems to climate change. Most previous studies have focused on ecosystem responses during drought while investigations of post‐drought recovery are rare. Few studies have used functional traits, and in particular bud or clonal traits, to explore the mechanisms underlying grassland responses to and recovery from drought.

    To address this issue, we experimentally imposed a four‐year drought in a C3‐dominated grassland in northeastern China and monitored recovery for 3 years post‐drought. We investigated the immediate and legacy effects of drought on total above‐ground net primary productivity (ANPP), ANPP of functional groups (rhizomatous grasses, bunch grasses and forbs), and how the legacy effects were driven by plant species diversity, clonal traits and vegetative traits.

    We found that drought progressively reduced total ANPP over the 4‐year period. The reductions in total ANPP in the first and third drought years were caused by the decrease in ANPP of bunch grasses only, while that of the second year was caused by declines in ANPP of bunch grasses and forbs, and the fourth year decline was linked to all three functional groups. The post‐drought recovery of ANPP, which occurred despite the continued loss of plant species diversity, was mainly driven by rapid recovery of rhizomatous and bunch grasses, which compensated for the slow response by forbs. The rapid post‐drought recovery of these grasses can be attributed to their relatively large, intact bud and shoot densities post‐drought, as well as the recovery of plant height and specific leaf area. The rapid recovery of grasses possibly restricted the growth and distribution of forbs, resulting in reduced forb ANPP and, consequently, lower species diversity during the recovery period.

    Synthesis. These results highlight the potential for positive legacy effects of drought on ANPP as well as the important and complementary roles of plant reproductive and vegetative traits in mediating ecosystem recovery from drought in a C3‐dominated grassland.

     
    more » « less