skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Genetic and physiological mechanisms of freezing tolerance in locally adapted populations of a winter annual
Premise

Despite myriad examples of local adaptation, the phenotypes and genetic variants underlying such adaptive differentiation are seldom known. Recent work on freezing tolerance and local adaptation in ecotypes ofArabidopsis thalianafrom Italy and Sweden provides an essential foundation for uncovering the genotype–phenotype–fitness map for an adaptive response to a key environmental stress.

Methods

We examined the consequences of a naturally occurring loss‐of‐function (LOF) mutation in an Italian allele of the gene that encodes the transcription factorCBF2,which underlies a major freezing‐tolerance locus. We used four lines with a Swedish genetic background, each containing aLOFCBF2allele. Two lines had introgression segments containing the ItalianCBF2allele, and two contained deletions created usingCRISPR‐Cas9. We used a growth chamber experiment to quantify freezing tolerance and gene expression before and after cold acclimation.

Results

Freezing tolerance was lower in the Italian (11%) compared to the Swedish (72%) ecotype, and all four experimentalCBF2LOFlines had reduced freezing tolerance compared to the Swedish ecotype. Differential expression analyses identified 10 genes for which allCBF2LOFlines, and theITecotype had similar patterns of reduced cold responsive expression compared to theSWecotype.

Conclusions

We identified 10 genes that are at least partially regulated byCBF2that may contribute to the differences in cold‐acclimated freezing tolerance between the Italian and Swedish ecotypes. These results provide novel insight into the molecular and physiological mechanisms connecting a naturally occurring sequence polymorphism to an adaptive response to freezing conditions.

 
more » « less
NSF-PAR ID:
10458095
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Botany
Volume:
107
Issue:
2
ISSN:
0002-9122
Page Range / eLocation ID:
p. 250-261
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ecotypic variation in forage nutrient value of a dominant grassland species,Andropogon gerardiiVitman (big bluestem), was quantified across a longitudinal precipitation gradient of theUSGreat Plains. Ecotypic variation ofA. gerardiihas been documented across this gradient, but the extent to which forage nutrient value differs among ecotypes is poorly known. Seven indicators of forage nutrient value (neutral detergent fiber [NDF], acid detergent fiber [ADF],in‐vitrodry matter digestibility [IVDMD], crude protein [CP], crude fat [CF], ash content) and relative feed value [RFV] were examined in 12 populations representing four ecotypes corresponding with distinct climate regions: eastern Colorado, central Kansas, eastern Kansas and southern Illinois. Vegetative material ofA. gerardiiwas collected from each population in July 2010. A greenhouse study tested the effect of watering regime on seedlings of the ecotypes from three of the precipitation regions grown under controlled conditions. Forage nutrient value indicators nitrogen andCPincreased, andADFdecreased east to west, whileIVDMDdecreased across the gradient corresponding with less annual precipitation. The greenhouse experiment showed that sampling before and after water treatment affected forage nutrient value measurements, with the exception ofNDFandCF. Nutrient value was most related to soil moisture and phenology, with smaller differences among ecotypes. Nutrient value of populations from the southern Illinois ecotype changed the least in response to variation in soil moisture. The southern Illinois ecotype will likely maintain forge nutrient value under variable precipitation projected to occur with climate change better than the ecotypes from more westerly parts of the range ofA. gerardii.

     
    more » « less
  2. Premise

    Light is critical in the ability of plants to accumulate chlorophyll. When exposed to far‐red (FR) light and then grown in white light in the absence of sucrose, wild‐type seedlings fail to green in a response known as theFRblock of greening (BOG). This response is controlled by phytochrome A through repression of protochlorophyllide reductase‐encoding (POR) genes byFRlight coupled with irreversible plastid damage. Sigma (SIG) factors are nuclear‐encoded proteins that contribute to plant greening and plastid development through regulating gene transcription in chloroplasts and impacting retrograde signaling from the plastid to nucleus.SIGs are regulated by phytochromes, and the expression of someSIGfactors is reduced in phytochrome mutant lines, including phyA. Given the association of phyA with theFR BOGand its regulation ofSIGfactors, we investigated the potential regulatory role ofSIGfactors in theFR BOGresponse.

    Methods

    We examinedFR BOGresponses insigmutants, phytochrome‐deficient lines, and mutant lines for several phy‐associated factors. We quantified chlorophyll levels and examined expression of keyBOG‐associated genes.

    Results

    Among sixsigmutants, only thesig6 mutant significantly accumulated chlorophyll afterFR BOGtreatment, similar to thephyAmutant.SIG6 appears to control protochlorophyllide accumulation by contributing to the regulation of tetrapyrrole biosynthesis associated with glutamyl‐tRNAreductase (HEMA1) function, select phytochrome‐interacting factor genes (PIF4andPIF6), andPENTA1, which regulatesPORAmRNAtranslation afterFRexposure.

    Conclusions

    Regulation ofSIG6plays a significant role in plant responses toFRexposure during theBOGresponse.

     
    more » « less
  3. Premise

    Environmental sex determination (ESD) is a rare sex determination system in which individuals may switch sex expression throughout their lifetimes in response to environmental factors. In sexually stable species, individuals usually bear more female flowers if the plants are larger, have greater access to limiting resources, or are in better condition. Research regarding sexually plastic species withESDand how resources correlate with sex expression is limited. Furthermore, most research investigates resources at the population level, failing to account for resources available to individuals for growth, maintenance, or reproduction.

    Methods

    Acer pensylvanicumis a species that is known to switch sex. Using twig samples collected during 2014–2016 in December and May, we analyzed resource status in the form of stored nonstructural carbohydrates (NSCs) and compared this with expressed sex.

    Results

    We found that females had higher sugar concentrations than males. Furthermore, males changing expression to female had higher sugar concentrations during the prior winter than did males remaining male. We found that size was not a key predictor: neither male nor female‐flowering individuals increasedNSCconcentrations with size. Dying female trees had high concentrations ofNSCs throughout the dying process and only manifested reducedNSCs once dead.

    Conclusions

    This is the first study showing significant correlations betweenNSCs and sex expression in a plant species withESD. These findings support the hypothesis that sex switching could be a consequence of increased resource availability and that the high female mortality ofA. pensylvanicumpopulations is likely not a direct result of carbon starvation.

     
    more » « less
  4. Abstract Objective

    Previously, we found that diet‐inducedHHcy in mice caused decreasedeNOSexpression and signaling in mesenteric arteries, but greatly enhanced non‐NOS, non‐prostacyclin‐dependent vasodilation, which involvesMEJcommunication. To further assess whetherHHcy enhancesMEJcommunication, this study examined endothelium‐dependent attenuation of phenylephrine‐induced vasoconstriction (myoendothelial feedback) and key molecules involved.

    Methods

    Myoendothelial feedback was examined in isolated mouse mesenteric arteries, after 6‐weeks diet‐inducedHHcy, using pressure myography. Gap junction (Cx37, Cx40, Cx43),NOS(eNOS,nNOS,iNOS), and potassium channel (IK1) protein expression were measured with immunoblots, and connexinmRNAs with real‐timePCR. Contribution ofnNOS + iNOSto vasomotor responses was assessed using the drug TRIM.

    Results

    Myoendothelial feedback was significantly (P < .05) enhanced inHHcy arteries compared to control, coincident with significantly greater Cx37 andIK1 protein and Cx37mRNA. Cx43 protein, but notmRNA, was significantly less inHHcy, and Cx40 was not different.eNOSprotein was significantly less inHHcy.nNOSandiNOSwere not different.TRIMhad little effect on vasomotor function.

    Conclusions

    Diet‐inducedHHcy enhanced myoendothelial feedback, and increased Cx37 andIK1 expression may contribute.nNOSoriNOSdid not upregulate to compensate for decreasedeNOS, and they had little involvement in vasomotor function.

     
    more » « less
  5. Summary

    Plants respond to abiotic stress through a variety of physiological, biochemical, and transcriptional mechanisms. Many genes exhibit altered levels of expression in response to abiotic stress, which requires concerted action of bothcis‐andtrans‐regulatory features. In order to study the variability in transcriptome response to abiotic stress,RNAsequencing was performed using 14‐day‐old maize seedlings of inbreds B73, Mo17, Oh43,PH207 and B37 under control, cold and heat conditions. Large numbers of genes that responded differentially to stress between parental inbred lines were identified.RNAsequencing was also performed on similar tissues of theF1hybrids produced by crossing B73 and each of the three other inbred lines. By evaluating allele‐specific transcript abundance in theF1hybrids, we were able to measure the abundance ofcis‐andtrans‐regulatory variation between genotypes for both steady‐state and stress‐responsive expression differences. Although examples oftrans‐regulatory variation were observed,cis‐regulatory variation was more common for both steady‐state and stress‐responsive expression differences. The genes withcis‐allelic variation for response to cold or heat stress provided an opportunity to study the basis for regulatory diversity.

     
    more » « less