skip to main content


Title: Evolution of the Greater Caucasus Basement and Formation of the Main Caucasus Thrust, Georgia
Abstract

Along the northern margin of the Arabia‐Eurasia collision zone in the western Greater Caucasus, the Main Caucasus Thrust (MCT) juxtaposes Paleozoic crystalline basement to the north against Mesozoic metasedimentary and volcaniclastic rocks to the south. The MCT is commonly assumed to be the trace of an active plate‐boundary scale structure that accommodates Arabia‐Eurasia convergence, but field data supporting this interpretation are equivocal. Here we investigate the deformation history of the rocks juxtaposed across the MCT in Georgia using field observations, microstructural analysis, U‐Pb and40Ar/39Ar geochronology, and40Ar/39Ar and (U‐Th)/He thermochronology. Zircon U‐Pb analyses show that Greater Caucasus crystalline rocks formed in the Early Paleozoic on the margin of Gondwana. Low‐pressure/temperature amphibolite‐facies metamorphism of these metasedimentary rocks and associated plutonism likely took place during Carboniferous accretion onto the Laurussian margin, as indicated by igneous and metamorphic zircon U‐Pb ages of ~330–310 Ma.40Ar/39Ar ages of ~190–135 Ma from muscovite in a greenschist‐facies shear zone indicate that the MCT likely developed during Mesozoic inversion and/or rifting of the Caucasus Basin. A Mesozoic40Ar/39Ar biotite age with release spectra indicating partial resetting and Cenozoic (<40 Ma) apatite and zircon (U‐Th)/He ages imply at least ~5–8 km of Greater Caucasus basement exhumation since ~10 Ma in response to Arabia‐Eurasia collision. Cenozoic reactivation of the MCT may have accommodated a fraction of this exhumation. However, Cenozoic zircon (U‐Th)/He ages in both the hanging wall and footwall of the MCT require partitioning a substantial component of this deformation onto structures to the south.

 
more » « less
NSF-PAR ID:
10458122
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Tectonics
Volume:
39
Issue:
3
ISSN:
0278-7407
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Convergent margins play a fundamental role in the construction and modification of Earth's lithosphere and are characterized by poorly understood episodic processes that occur during the progression from subduction to terminal collision. On the northern margin of the active Arabia‐Eurasia collision zone, the Greater Caucasus Mountains provide an opportunity to study a protracted convergent margin that spanned most of the Phanerozoic and culminated in Cenozoic continental collision. However, the main episodes of lithosphere formation and deformation along this margin remain enigmatic. Here, we use detrital zircon U–Pb geochronology from Paleozoic and Mesozoic (meta)sedimentary rocks in the Greater Caucasus, along with select zircon U–Pb and Hf isotopic data from coeval igneous rocks, to link key magmatic and depositional episodes along the Caucasus convergent margin. Devonian to Early Carboniferous rocks were deposited prior to Late Carboniferous accretion of the Greater Caucasus crystalline core onto the Laurussian margin. Permian to Triassic rocks document a period of northward subduction and forearc deposition south of a continental margin volcanic arc in the Northern Caucasus and Scythian Platform. Jurassic rocks record the opening of the Caucasus Basin as a back‐arc rift during southward migration of the arc front into the Lesser Caucasus. Cretaceous rocks have few Jurassic‐Cretaceous zircons, indicating a period of relative magmatic quiescence and minimal exhumation within this basin. Late Cenozoic closure of the Caucasus Basin juxtaposed the Lesser Caucasus arc to the south against the crystalline core of the Greater Caucasus to the north and led to the formation of a hypothesized terminal suture. We expect this suture to be within ~20 km of the southern range front of the Greater Caucasus because all analysed rocks to the north exhibit a provenance affinity with the crystalline core of the Greater Caucasus.

     
    more » « less
  2. Abstract

    Archean rocks exposed in the Beartooth Mountains, Montana and Wyoming, have experienced a complex >2.5 Gyr thermal history related to the long‐term geodynamic evolution of Laurentia. We constrain this history using “deep‐time” thermochronology, reporting zircon U‐Pb, biotite40Ar/39Ar, and zircon and apatite [U‐Th(‐Sm)]/He results from three transects across the basement‐core of the range. Our central transect yielded a zircon U‐Pb concordia age of 2,805.6 ± 6.4 Ma. Biotite40Ar/39Ar plateau ages from western samples are ≤1,775 ± 27 Ma, while those from samples further east are ≥2,263 ± 76 Ma. Zircon (U‐Th)/He dates span 686.4 ± 11.9 to 13.5 ± 0.3 Ma and show a negative relationship with effective uranium—a proxy for radiation damage. Apatite (U‐Th)/He dates are 109.2 ± 23.9 to 43.6 ± 1.9 Ma and correlate with sample elevation. Multi‐chronometer Bayesian time‐temperature inversions suggest: (a) Cooling between ∼1.90 and ∼1.80 Ga, likely related to Big Sky orogeny thermal effects; (b) Reheating between ∼1.80 Ga and ∼1.35 Ga consistent with Mesoproterozoic burial; (c) Cooling to ≤100°C between Mesoproterozoic and early Paleozoic time, likely reflecting continental erosion; (d) Variable Paleozoic–Jurassic cooling, possibly related to Paleozoic tectonism and/or low eustatic sea level; (e) Rapid Cretaceous–Paleocene cooling, preceding accepted proxies for flat‐slab subduction; (f) Eocene–Miocene reheating consistent with reburial by Cenozoic volcanics and/or sediments; (g) Post‐20 Ma cooling consistent with Neogene development of topographic relief. Our results emphasize the utility of multi‐chronometer thermochronology in recovering complex, non‐monotonic multi‐billion‐year thermal histories.

     
    more » « less
  3. Abstract

    New data from the lower Miocene Dumri Formation of western Nepal document exhumation of the Himalayan fold‐thrust belt and provenance of the Neogene foreland basin system. We employ U‐Pb zircon, Th‐Pb monazite,40Ar/39Ar white mica, and zircon fission track chronometers to detrital minerals to constrain provenance, timing, and rate of exhumation of Himalayan source regions. Clusters of Proterozoic–early Paleozoic (900–400 Ma) Th‐Pb monazite and40Ar/39Ar white mica detrital ages provide evidence for erosion of a Greater Himalayan sequence protolith unaffected by high‐grade Eohimalayan metamorphism. A small population of ~40 Ma cooling ages in detrital white mica grains shows exhumation of low‐grade metamorphic Tethyan Himalayan sequence through the ~350 °C closure temperature along the Tethyan Frontal thrust (proto‐South Tibetan detachment) during the late Eocene. Dumri Formation detritus shows a ~12 Myr time difference between cooling of its source rocks through the ~350 and ~240 °C closure temperatures as recorded by ~40–38 Ma youngest peak cooling ages in40Ar/39Ar detrital white mica and ~28–24 Ma youngest populations in detrital zircon fission track. Exhumation between circa 40 and 28 Ma is consistent with slip and exhumation along the Main Central Thrust. Combined with similar data from northwestern India, our study suggests west‐to‐east spatially variable exhumation rates along strike of the Main Central Thrust. Our data also show an increase in exhumation during middle Miocene–Pliocene time, which is consistent with growth of the Lesser Himalaya duplex.

     
    more » « less
  4. Abstract

    Detrital zircon (DZ) U‐Pb geochronology is a widely used provenance tool that leverages bedrock age signatures of hinterland source terranes. However, complex sediment recycling of multicycle zircon and hinterland provinces with nondiagnostic U‐Pb ages represent possible pitfalls for provenance reconstructions. Additional biases pertain to source rock zircon fertilities and insensitivity to low‐ and medium‐grade tectonothermal events that do not result in zircon generation. To bridge these inherent biases and gaps in DZ U‐Pb provenance data sets and derive more comprehensive tectonic reconstruction, this study combined U‐Pb and trace element analyses on DZ, apatite, and rutile as well as zircon (U‐Th)/He analyses from the Proto‐Zagros foreland basin in western Iran to shed light on Late Cretaceous tectonic accretion along Arabia. Integrated multimineral, multimethod data sets record formation of a 110‐ to 85‐Ma island arc within Triassic mid‐oceanic ridge crust of the Neotethys ocean, simultaneous obduction starting in Santonian‐Early Campanian times, and inversion of the Arabian rift margin. Overall, integration of these techniques constrains provenance based on multiple independent criteria including crystallization age, cooling history, and petrogenic‐geodynamic environment. This approach not only more completely described provenance signatures but also helped avoid significant pitfalls. For example, while Triassic DZ U‐Pb ages might be mistaken as input from Eurasia, zircon trace element analysis reveals a MORB signature and attributes these DZ to Neotethyan oceanic rather than Eurasian continental origin, having fundamentally different paleogeographic/tectonic implications for the Arabia‐Eurasia collision. Moreover, detrital rutile and apatite resolve and characterize multiple Paleozoic‐Mesozoic thermotectonic events not recorded by DZ U‐Pb due to their largely amagmatic nature.

     
    more » « less
  5. Abstract

    Cenozoic exhumation patterns in the internal and external Zagros reveal a long‐term deformation record associated with geodynamic restructuring of Arabia‐Eurasia collisional zone from continental subduction to plate suturing, which can be evaluated from thermochronometric, provenance, and subsidence analyses. Thermal modeling of zircon and apatite (U‐Th)/He ages and apatite fission track data from the Sanandaj‐Sirjan Zone (SSZ) indicates exhumation and inferred uplift along the leading edge of Eurasia starting in the Late Eocene (~35 Ma), coeval with initial foreland flexural subsidence of Arabia. Together with deceleration in Arabia‐Eurasia convergence and diminished subduction‐related magmatism, these events signal the final Neotethys closure and onset of long‐term (15–20 Myr) Arabian continental subduction beneath Eurasia, facilitated by the attenuated architecture of the precollisional Arabian margin. From 35 to 20 Ma, crustal shortening was relatively subdued and restricted to areas along the Arabia‐Eurasia plate boundary and diffuse inversion structures within continental interiors. Acceleration in SSZ cooling/exhumation rates from 19 to 16 Ma was synchronous with rapid basin subsidence and clastic progradation in the Zagros foreland. These events were contemporaneous with 20‐ to 16‐Ma surge in calc‐alkaline magmatism in central Iran and may have been linked to reorganization/deflection of Arabian plate vectors during the main phase of Red Sea rifting at 19–18 Ma. Transition from continental subduction to Arabia‐Eurasia suturing by ~12 Ma forced a transfer of strain from the subduction zone to intraplate deformational structures. This was marked by rapid outward expansion of the Zagros orogen, involving a shift in exhumation from the SSZ to Zagros fold‐thrust belt and Iranian plate interior.

     
    more » « less