Membrane technology remains the most energy‐efficient process for removing contaminants (micrometer‐size particles to angstrom‐size hydrated ions) from water. However, the current membrane technology, involving relatively expensive synthetic materials, is often nonsustainable for the poorest communities in the society. In this article, perspectives are provided on the emerging nanocellulose‐enabled membrane technology based on nanoscale cellulose fibers that can be extracted from almost any biomass. It is conceivable that nanocellulose membranes developed from inexpensive, abundant, and sustainable resources (such as agriculture residues and underutilized biomass waste) can lower the cost of membrane separation, as these membranes offer the ability to remove a range of pollutants in one step, via size exclusion and/or adsorption. The nanocellulose‐enabled membrane technology not only may be suitable for tackling global drinking water challenges, but it can also provide a new low‐cost platform for various pressure‐driven filtration techniques, such as microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Some relevant parameters that can control the filtration performance of nanocellulose‐enabled membranes are comprehensively discussed. A short review of the current state of development for nanocellulose membranes is also provided.
more » « less- Award ID(s):
- 1808690
- NSF-PAR ID:
- 10458128
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Sustainable Systems
- Volume:
- 4
- Issue:
- 5
- ISSN:
- 2366-7486
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The separation of oil from water and filtration of aqueous solutions and dispersions are critical issues in the processing of waste and contaminated water treatment. Membrane-based technology has been proven as an effective method for the separation of oil from water. In this research, novel vertical nanopores membrane, via oriented cylindrical block copolymer (BCP) films, suitable for oil/water filtration has been designed, fabricated and tested. We used a ∼100 nm thick model poly(styrene- block -methymethacrylate) (PS- b -PMMA) BCP as the active top nanofiltration layer, processed using a roll-to-roll (R2R) method of cold zone annealing (CZA) to obtain vertical orientation, followed by ultraviolet (UV) irradiation selective etch of PMMA cylinders to form vertically oriented nanopores as a novel feature compared to meandering nanopores in other reported BCP systems. The cylindrical nanochannels are hydrophilic, and have a uniform pore size (∼23 nm), a narrow pore size distribution and a high nanopore density (∼420 per sq. micron). The bottom supporting layer is a conventional microporous polyethersulfone (PES) membrane. The created asymmetric membrane is demonstrated to be effective for oil/water extraction with a modestly high throughput rate comparable to other RO/NF membranes. The molecular weight dependent filtration of a water soluble polymer, PEO, demonstrates the broader applications of such membranes.more » « less
-
Abstract Two-dimensional membranes have gained enormous interest due to their potential to deliver precision filtration of species with performance that can challenge current desalination membrane platforms. Molybdenum disulfide (MoS2) laminar membranes have recently demonstrated superior stability in aqueous environment to their extensively-studied analogs graphene-based membranes; however, challenges such as low ion rejection for high salinity water, low water flux, and low stability over time delay their potential adoption as a viable technology. Here, we report composite laminate multilayer MoS2membranes with stacked heterodimensional one- to two-layer-thick porous nanosheets and nanodisks. These membranes have a multimodal porous network structure with tunable surface charge, pore size, and interlayer spacing. In forward osmosis, our membranes reject more than 99% of salts at high salinities and, in reverse osmosis, small-molecule organic dyes and salts are efficiently filtered. Finally, our membranes stably operate for over a month, implying their potential for use in commercial water purification applications.
-
Membrane filtration is an important industrial purification process used to access clean and potable water. The fabrication of the membranes used in these purification applications often involves expensive and energy-intensive processes that have a large negative impact on the environment. Sustainable alternatives with a high water flux and strong rejection performance are needed to purify water. The focus of this work is to investigate the use of polymer-grafted cellulose nanocrystals (CNCs) in membrane applications. The impact of the polymer grafting density and polymer conformation was investigated and it is shown that by increasing the grafting density of PEG such that it adopts a semidilute polymer brush conformation, the water flux through the membranes could be increased from 3.5 to 2900 L h–1 m–2 for CNC membranes without and with grafted PEG, respectively. These membranes also exhibited rejection performances with molecular weight cutoffs between 62 and 100 kDa for all polymer-grafted samples, consistent with the ultrafiltration regime. Thus, the design of these one-component composite materials can enhance the water permeability of ultrafiltration membranes while maintaining effective selectivity.more » « less
-
Microplastics are commonly recognized as environmental and biotic contaminants. The prevalent presence of microplastics in aquatic settings raises concerns about plastic pollution. Therefore, it is critical to develop methods that can eliminate these microplastics with low cost and high effectiveness. This review concisely provides an overview of various methods and technologies for removing microplastics from wastewater and marine environments. Dynamic membranes and membrane bioreactors are effective in removing microplastics from wastewater. Chemical methods such as coagulation and sedimentation, electrocoagulation, and sol-gel reactions can also be used for microplastic removal. Biological methods such as the use of microorganisms and fungi are also effective for microplastic degradation. Advanced filtration technologies like a combination of membrane bioreactor and activated sludge method show high microplastic removal efficiency.more » « less
-
Abstract The recognition of membrane separations as a vital technology platform for enhancing the efficiency of separation processes has been steadily increasing. Concurrently, 3D printing has emerged as an innovative approach to fabricating reverse osmosis membranes for water desalination and treatment purposes. This method provides a high degree of control over membrane chemistry and structural properties. In particular, when compared to traditional manufacturing techniques, 3D printing holds the potential to expedite customization, a feat that is typically achieved through conventional manufacturing methods but often involves numerous processes and significant costs. This review aims to present the current advancements in membrane manufacturing technology specifically tailored for water desalination purposes, with a particular focus on the development of 3D-printed membranes. A comprehensive analysis of recent progress in 3D-printed membranes is provided. However, conducting experimental work to investigate various influential factors while ensuring consistent results poses a significant challenge. To address this, we explore how membrane manufacturing processes and performance can be effectively pre-designed and guided through the use of molecular dynamics simulations. Finally, this review outlines the challenges faced and presents future perspectives to shed light on research directions for optimizing membrane manufacturing processes and achieving optimal membrane performance.