skip to main content


Title: Ecological strategies begin at germination: Traits, plasticity and survival in the first 4 days of plant life
Abstract

We commonly use trait variation to characterize plant function within and among species and understand how vegetation responds to the environment. Seedling emergence is an especially vulnerable window affecting population and community dynamics, yet trait‐based frameworks often bypass this earliest stage of plant life. Here we assess whether traits vary in ecologically meaningful ways when seedlings are just days old. How do shared evolutionary history and environmental conditions shape trait expression, and can traits explain which seedlings endure drought?

We measured seedling traits in the first 4 days of life for 16 annual plant species under two water treatments, exploring trait trade‐offs, species‐level plasticity and the ability of traits to predict duration of survival under drought.

Nearly half of traits showed the imprint of evolutionary history (i.e. significant phylogenetic signal), often reflecting differences between grasses and forbs, two groups separated by a deep evolutionary split. Water availability altered trait expression in most cases, though species‐level plastic responses also reflected evolutionary history.

On average, new seedlings exhibited substantial trait variation structured as multiple trade‐offs like those found in mature plants. Some species invested in thick roots and shoots, whereas others invested in more efficient tissues. Separately, some invested in tougher roots and others in deeper roots. We also observed trade‐offs related to growth rates (fast or slow) and biomass allocation (above‐ or below‐ground). Drought survival time was correlated most strongly with seed mass, root construction and allocation traits, and phylogeny (grasses vs. forbs).

Synthesis.Our results show that seed and seedling trait variation among annual species is substantial, and that a few attributes could capture major dimensions of ecological strategies during emergence. With seedling survival times ranging twofold among annuals (from 7.5 to 14.5 days), these strategies could mitigate recruitment responses to more frequent or longer dry spells. Multivariate trait and plasticity strategies should be further explored in studies designed to assess trait‐fitness linkages during recruitment.

A freePlain Language Summarycan be found within the Supporting Information of this article.

 
more » « less
NSF-PAR ID:
10458138
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
34
Issue:
5
ISSN:
0269-8463
Page Range / eLocation ID:
p. 968-979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Multidimensional trait frameworks are increasingly used to understand plant strategies for growth and survival. However, it is unclear if frameworks developed at a global level can be applied in local communities and how well these frameworks—based largely on plant morphological traits—align with plant physiology and response to stress.

    We tested the ability of an integrated framework of plant form and function to characterise seedling trait variation and drought response among 22 grasses and forbs common in a semi‐arid grassland. We measured above‐ground and below‐ground traits, and survival to explore how drought response is linked to three trait dimensions (resource conservation, microbial collaboration, and plant size) associated with the framework as well as non‐morphological dimensions (e.g. physiological traits) that are under‐represented in global trait frameworks.

    We found support for three globally‐recognised axes representing trade‐offs in strategies associated with tissue investment (leaf nitrogen, leaf mass per area, root tissue density), below‐ground resource uptake (root diameter, specific root length), and size (shoot mass). However, in contrast to global patterns, above‐ground and below‐ground resource conservation gradients were oppositely aligned: root tissue density was positively correlated with leaf N rather than leaf mass per area. This likely reflects different investment strategies of annual and perennial herbaceous species, as fast‐growing annual species invested in lower density roots and less nitrogen‐rich leaves to maximise plant‐level carbon assimilation. Species with longer drought survival minimised water loss through small above‐ground size and low leaf‐level transpiration rates, and drought survival was best predicted by a principal component axis representing plant size.

    Contrary to our expectations, drought survival in seedlings did not align with the conservation or collaboration axes suggesting that seedlings with different functional strategies can achieve similar drought survival, as long as they minimise water loss. Our results also show that within local communities, expected trait relationships could be decoupled as some plant groups achieve similar performance through different trait combinations. The effectiveness of species mean trait values in predicting drought response highlights the value of trait‐based methods as a versatile tool for understanding ecological processes locally across various ecosystems.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  2. Abstract

    Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade tolerant species but exist on a continuum of performance trade‐offs between survival in shade and the ability to quickly grow in sunlight. These trade‐offs can promote coexistence by reducing fitness differences.

    Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates.

    Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade‐offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs. photosynthetic) or other leaf, stem and root traits. These can cause species with the same average seed mass to have divergent performance in the same habitat.

    We combined long‐term studies of seedling dynamics with functional trait data collected at a standard life‐history stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance.

    Across hundreds of species in Ecuador, Panama and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade‐offs in seedling growth and survival. These results underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics.

    Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology in tropical forests because of the contribution of carbon reserves in storage cotyledons to reducing mortality rates and explaining the growth‐survival trade‐off among species.

    Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance.

     
    more » « less
  3. Abstract

    Roots are essential to the diversity and functioning of plant communities, but trade‐offs in rooting strategies are still poorly understood.

    We evaluated existing frameworks of rooting strategy trade‐offs and tested their underlying assumptions, guided by the hypothesis that community‐level rooting strategies are best described by a combination of variation in organ‐level traits, plant‐level root:shoot allocation and symbiosis‐level mycorrhizal dependency. We tested this hypothesis using data on plant community structure, above‐ and below‐ground biomass, eight root traits including mycorrhizal colonisation and soil properties from an edaphic gradient driven by elevation and water availability in sandhills prairie, Nebraska, USA.

    We found multidimensional trade‐offs in rooting strategies represented by a two‐way productivity‐durability trade‐off axis (captured by root length density and root dry matter content) and a three‐way resource acquisition trade‐off between specific root length, root:shoot mass ratio and mycorrhizal dependence. Variation in rooting strategies was driven to similar extents by interspecific differences and intraspecific responses to soil properties.

    Organ‐level traits alone were insufficient to capture community‐level trade‐offs in rooting strategies across the edaphic gradient. Instead, trait variation encompassing organ, plant and symbiosis levels revealed that consideration of whole‐plant phenotypic integration is essential to defining multidimensional trade‐offs shaping the functional variation of root systems.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  4. Abstract

    Plants allocate biomass to different organs in response to resource variation for maximizing performance, yet we lack a framework that adequately integrates plant responses to the simultaneous variation in above‐ and below‐ground resources. Although traditionally, the optimal partition theory (OPT) has explained patterns of biomass allocation in response to a single limiting resource, it is well‐known that in natural communities multiple resources limit growth. We study trade‐offs involved in plant biomass allocation patterns and their effects on plant growth under variable below‐ and above‐ground resources—light, soil N and P—for seedling communities.

    We collected information on leaf, stem and root mass fractions for more than 1,900 seedlings of 97 species paired with growth data and local‐scale variation in abiotic resources from a tropical forest in China.

    We identified two trade‐off axes that define the mass allocation strategies for seedlings—allocation to photosynthetic versus non‐photosynthetic tissues and allocation to roots over stems—that responded to the variation in soil P and N and light. Yet, the allocation patterns did not always follow predictions of OPT in which plants should allocate biomass to the organ that acquires the most limiting resource. Limited soil N resulted in high allocation to leaves at the expense of non‐photosynthetic tissues, while the opposite trend was found in response to limited soil P. Also, co‐limitation in above‐ and below‐ground resources (light and soil P) led to mass allocation to stems at the expense of roots. Finally, we found that growth increased under high‐light availability and soil P for seedlings that invested more in photosynthetic over non‐photosynthetic tissues or/and that allocated mass to roots at the expense of stem.

    Synthesis. Biomass allocation patterns to above‐ and below‐ground tissues are described by two independent trade‐offs that allow plants to have divergent allocation strategies (e.g. high root allocation at the expense of stem or high leaf allocation at the expense of allocation to non‐photosynthetic tissues) and enhance growth under different limiting resources. Identifying the trade‐offs driving biomass allocation is important to disentangle plant responses to the simultaneous variation in resources in diverse forest communities.

     
    more » « less
  5. Abstract

    Organisms of all species must balance their allocation to growth, survival and recruitment. Among tree species, evolution has resulted in different life‐history strategies for partitioning resources to these key demographic processes. Life‐history strategies in tropical forests have often been shown to align along a trade‐off between fast growth and high survival, that is, the well‐known fast–slow continuum. In addition, an orthogonal trade‐off has been proposed between tall stature—resulting from fast growth and high survival—and recruitment success, that is, a stature−recruitment trade‐off. However, it is not clear whether these two independent dimensions of life‐history variation structure tropical forests worldwide.

    We used data from 13 large‐scale and long‐term tropical forest monitoring plots in three continents to explore the principal trade‐offs in annual growth, survival and recruitment as well as tree stature. These forests included relatively undisturbed forests as well as typhoon‐disturbed forests. Life‐history variation in 12 forests was structured by two orthogonal trade‐offs, the growth−survival trade‐off and the stature−recruitment trade‐off. Pairwise Procrustes analysis revealed a high similarity of demographic relationships among forests. The small deviations were related to differences between African and Asian plots.

    Synthesis. The fast–slow continuum and tree stature are two independent dimensions structuring many, but not all tropical tree communities. Our discovery of the consistency of demographic trade‐offs and life‐history strategies across different forest types from three continents substantially improves our ability to predict tropical forest dynamics worldwide.

     
    more » « less