skip to main content


Title: Interaction of wind and cold‐season hydrologic processes on erosion from complex topography following wildfire in sagebrush steppe
Abstract

Wildfire is a natural component of sagebrush (Artemisiaspp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind‐ and water‐driven erosion. Much of the fire‐related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water‐driven erosion under high‐intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow‐dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold‐season hydrology. Current understanding is limited regarding fire effects on the interaction of wind‐ and cold‐season hydrologic‐driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow‐dominated mountainous sagebrush site over a 2‐year period post‐fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n= 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop‐box v‐notch weir. Wildfire consumed nearly all above‐ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post‐fire period. Widespread wind‐driven sediment loading of swales was observed over the first month post‐fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north‐ and south‐facing aspects averaged 0.99–8.62 t ha−1at the short‐hillslope scale (~0.004 ha), 0.02–1.65 t ha−1at the long‐hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short‐ to long‐hillslope scales (0.02–0.04 t ha−1), but was similar to first‐year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold‐season hydrologic processes, including rain‐on‐snow, rain‐on‐frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in the immediate post‐fire period and subsequent flushing of these sediments by runoff from cold‐season hydrologic processes. Our results suggest that the interaction of aeolian and cold‐season hydrologic‐driven erosion processes is an important component for consideration in post‐fire erosion assessment and prediction and can have profound implications for soil loss from these ecosystems. © 2019 John Wiley & Sons, Ltd.

 
more » « less
NSF-PAR ID:
10458175
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earth Surface Processes and Landforms
Volume:
45
Issue:
4
ISSN:
0197-9337
Page Range / eLocation ID:
p. 841-861
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sediment fences are often used to monitor hillslope erosion, but these can underestimate sediment yields due to overtopping of runoff and associated sediment. We modified four sediment fences to collect and measure the runoff and sediment that overtopped the fence in addition to the sediment deposited behind the fence. Specific objectives were to: (1) determine the catch efficiency of sediment fences measuring post‐fire hillslope erosion; (2) assess particle sorting of sand, silt/clay, and organic matter from each hillslope through the sediment fence and subsequent runoff collection barrels; (3) evaluate how catch efficiency and particle size sorting relate to site and rainfall‐runoff event characteristics; and (4) use runoff simulations to estimate sediment fence volumes for future post‐fire monitoring.

    Catch efficiency ranged from 28 to 100% for events and 38 to 94% per site for the entire sampling season, indicating a relatively large underestimation of sediment yields by sediment fences. Most of the eroded sediment had similar proportions of sand and silt/clay as the hillslope soils, but the sediment behind the fence was significantly enriched in sand while the sediment that overtopped the fence was more strongly enriched in silt/clay. The sediment fences had capacities of 3 m3for hillslopes of 0.19–0.43 ha, but simulations of runoff for 2‐ to 100‐year storms indicate that the sediment fences would need a capacity of up to 240 m3to store all of the runoff and associated sediment. More accurate measurements of sediment yields with sediment fences require either increasing the storage capacity of the sediment fence(s) to accommodate the expected volume of runoff and sediment, reducing the size of the contributing area, or directly measuring the runoff and sediment that overtop the fence. © 2020 John Wiley & Sons, Ltd.

     
    more » « less
  2. Abstract

    Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre‐fire conditions. This research examines the connectivity of post‐fire runoff and sediment from hillslopes (<1.5 ha;n= 31) and catchments (<1000 ha;n= 10) within two watersheds (<1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post‐fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration‐excess overland flow, high sediment yields, in‐stream sediment deposition and channel substrate fining. For both storms, hillslope‐to‐stream sediment delivery ratios and area‐normalised cross‐sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope‐to‐stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post‐fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.

     
    more » « less
  3. Abstract

    Hydrologic connectivity refers to the processes and thresholds leading to water transport across a landscape. In dryland ecosystems, runoff production is mediated by the arrangement of vegetation and bare soil patches on hillslopes and the properties of ephemeral channels. In this study, we used runoff measurements at multiple scales in a small (4.67 ha) mixed shrubland catchment of the Chihuahuan Desert to identify controls on and thresholds of hillslope‐channel connectivity. By relating short‐ and long‐term hydrologic records, we also addressed whether observed changes in outlet discharge since 1977 were linked to modifications in hydrologic connectivity. Hillslope runoff production was controlled by the maximum rainfall intensity occurring in a 30‐min interval (I30), with small‐to‐negligible effects of antecedent surface soil moisture, vegetation cover, or slope aspect. AnI30threshold of nearly 10 mm/h activated runoff propagation from the shrubland hillslopes and through the main ephemeral channel, whereas anI30threshold of about 16 mm/h was required for discharge from the catchment outlet. Since storms rarely exceedI30, full hillslope‐channel connectivity occurs infrequently in the mixed shrubland, leading to <2% of the annual precipitation being converted into outlet discharge. Progressive decreases in outlet discharge since 1977 could not be explained by variations in precipitation metrics, includingI30, or the process of woody plant encroachment. Instead, channel modifications from the buildup of sediment behind measurement flumes may have increased transmission losses and reduced outlet discharge. Thus, alterations in channel properties can play an important role in the long‐term (45‐year) variations of rainfall–runoff dynamics of small desert catchments.

     
    more » « less
  4. Abstract

    Landscapes after wildfire commonly experience accelerated hillslope erosion, which often contributes to the mobilization and volume of debris flows. However, quantitative studies of the erosion and its relationship to rainfall, runoff, and landscape characteristics have been limited to a narrow range of physiographic conditions. We estimated the volume and delivery rate of slurry (a water‐sediment mixture) supplied to stream channels during a post‐wildfire rainstorm that generated large debris flows in six catchments above Montecito, CA, in 2018. We mapped the distribution of rills and measured their cross‐sectional geometries to quantify the influences of runoff, lithology, and hillslope characteristics on the sediment volumes released by rill erosion, and we scaled the results up to the 19.5 km2of burned hillslopes in the source catchments. We computed the likely rate of surface runoff during the rainstorm and developed an empirical model for the evolution of a representative hillslope‐spanning rill to illustrate the magnitude and speed of the erosion process. Rilling was the dominant form of erosion across the hillslopes of the source catchments, and the rapid evacuation and mixing of water and sediment during rill formation supplied a slurry with high solids concentrations to stream channels. Colluvium on shale formations was more continuous, finer‐grained, and probably less permeable than colluvium on sandstones, and these differences affected the extent and dimensions of rills. As a result, shale hillslopes were the dominant source of slurry to the debris flows and supplied over twice as much slurry per unit burn area as sandstones.

     
    more » « less
  5. Abstract Landscapes following wildfire commonly have significant increases in sediment yield and debris flows that pose major hazards and are difficult to predict. Ultimately, post-wildfire sediment yield is governed by processes that deliver sediment from hillslopes to channels, but it is commonly unclear the degree to which hillslope sediment delivery is driven by wet versus dry processes, which limits the ability to predict debris-flow occurrence and response to climate change. Here we use repeat airborne lidar topography to track sediment movement following the 2009 CE Station Fire in southern California, USA, and show that post-wildfire debris flows initiated in channels filled by dry sediment transport, rather than on hillsides during rainfall as typically assumed. We found widespread patterns of 1–3 m of dry sediment loading in headwater channels immediately following wildfire and before rainfall, followed by sediment excavation during subsequent storms. In catchments where post-wildfire dry sediment loading was absent, possibly due to differences in lithology, channel scour during storms did not occur. Our results support a fire-flood model in bedrock landscapes whereby debris-flow occurrence depends on dry sediment loading rather than hillslope-runoff erosion, shallow landslides, or burn severity, indicating that sediment supply can limit debris-flow occurrence in bedrock landscapes with more-frequent fires. 
    more » « less