Nonwoven super‐hydrophobic fiber membranes have potential applications in oil–water separation and membrane distillation, but fouling negatively impacts both applications. Membranes were prepared from blends comprising poly(vinylidene fluoride) (PVDF) and random zwitterionic copolymers of poly(methyl methacrylate) (PMMA) with sulfobetaine methacrylate (SBMA) or with sulfobetaine‐2‐vinylpyridine (SB2VP). PVDF imparts mechanical strength to the membrane, while the copolymers enhance fouling resistance. Blend composition was varied by controlling the PVDF‐to‐copolymer ratio. Nonwoven fiber membranes were obtained by electrospinning solutions of PVDF and the copolymers in a mixed solvent of
Herein, phase inversion poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) microporous membranes were prepared at various PMMA concentration by immersion precipitation method. Increment in the PMMA concentration has a significant influence in the PVDF membrane crystallinity, which is studied by differential scanning calorimeter, X‐ray diffractometer, and small‐angle X‐ray scattering analyses. Properties such as membrane bulk structure, porosity, hydrophilicity, mechanical stability, and water flux vary in terms of PMMA concentration. Porosity is increased, and tensile strength decreased when PMMA concentration is beyond 30 wt %. Thermodynamic instability during the liquid to solid phase separation and variation in the crystallinity has an intense effect on these membrane properties. Then, 70/30 blend membrane selected as optimum composition owing to the high porosity and pure water flux compared to other compositions. This membrane is modified with a composite filler derived from the graphene oxide and titanate crosslinked by chitosan. The antibacterial, antifouling, and bovine serum albumin separation studies reveal that the developed nanocomposite membrane is a potential candidate for the separation application. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci.
- PAR ID:
- 10458226
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Applied Polymer Science
- Volume:
- 137
- Issue:
- 27
- ISSN:
- 0021-8995
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract N ,N ‐dimethylacetamide and acetone. The PVDF crystal phases and crystallinities of the blends were studied using wide‐angle X‐ray diffraction and differential scanning calorimetry (DSC). PVDF crystallized preferentially into its polarβ ‐phase, though its degree of crystallinity was reduced with increased addition of the random copolymers. Thermogravimetry (TG) showed that the degradation temperatures varied systematically with blend composition. PVDF blends with either copolymer showed significant increase of fouling resistance. Membranes prepared from blends containing 10% P(MMA‐ran ‐SB2VP) had the highest fouling resistance, with a fivefold decrease in protein adsorption on the surface, compared to homopolymer PVDF. They also exhibited higher pure water flux, and better oil removal in oil–water separation experiments. © 2018 Society of Chemical Industry -
ABSTRACT We report the structure and thermal properties of blends comprising poly(vinylidene fluoride) (PVDF) and a random fluorinated copolymer (FCP) of poly(methyl methacrylate)‐
random ‐1H,1H,2H,2H‐perfluorodecyl methacrylate, promising membrane materials for oil–water separation. The roles of processing method and copolymer content on structure and properties were studied for fibrous membranes and films with varying compositions. Bead‐free, nonwoven fibrous membranes were obtained by electrospinning. Fiber diameters ranged from 0.4 to 1.9 μm, and thinner fibers were obtained for PVDF content >80%. As copolymer content increased, degree of crystallinity and onset of degradation for each blend decreased. Processing conditions have a greater impact on the crystallographic phase of PVDF than copolymer content. Fibers have polar beta phase; solution‐cast films contain gamma and beta phase; and melt crystallized films form alpha phase. Kwei's model was used to model the glass transition temperatures of the blends. Addition of FCP increases hydrophobicity of the electrospun membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019 ,57 , 312–322 -
Abstract Materials combining an asymmetric pore structure with mesopores everywhere enable high surface area accessibility and fast transport, making them attractive for e.g., energy conversion and storage applications. Block copolymer (BCP)/inorganic precursor co‐assembly combined with non‐solvent induced phase separation (NIPS) provides a route to materials in which a mesoporous top surface layer merges into an asymmetric support with graded porosity along the film normal and mesopores throughout. Here, the co‐assembly and non‐solvent‐induced phase separation (CNIPS) of poly(isoprene)‐
b ‐poly(styrene)‐b ‐poly(4‐vinylpyridine) (ISV) triblock terpolymer and titanium dioxide (TiO2) sol‐gel nanoparticlesare reported. Heat‐treatment in air results in free‐standing asymmetric porous TiO2. Further thermal processing in ammonia results in free‐standing asymmetric porous titanium nitride (TiN). processing changes alter structural membrane characteristics is demonstrated. Changing the CNIPS evaporation time results in various membrane cross‐sections ( finger‐like to sponge‐like). Oxide and nitride material composition, crystallinity, and porosity are tuned by varying thermal processing conditions. Finally, thermal processing condition effects are probed on phase‐pure asymmetric nitride membrane behavior using cyclic voltammetry to elucidate their influence, e.g., on specific capacitance. Results provide further insights into improving asymmetric and porous materials for applications including energy conversion and storage, separation, and catalysis and motivate a further expansion of CNIPS to other (in)organic materials. -
Direct contact membrane distillation (DCMD) has been conducted to treat hydraulic fracturing-produced water using polyvinylidenedifluoride (PVDF) membranes. Tailoring the surface properties of the membrane is critical in order to reduce the rate of adsorption of dissolved organic species as well as mineral salts. The PVDF membranes have been modified by grafting zwitterion and polyionic liquid-based polymer chains. In addition, surface oxidation of the PVDF membrane has been conducted using KMnO4 and NaOH. Surface modification conditions were chosen in order to minimize the decrease in contact angle. Thus, the membranes remain hydrophobic, essential for suppression of wetting. DCMD was conducted using the base PVDF membrane as well as modified membranes. In addition, DCMD was conducted on the base membrane using produced water (PW) that was pretreated by electrocoagulation to remove dissolved organic compounds. After DCMD all membranes were analyzed by scanning electron microscopy imaging as well as Energy-Dispersive X-Ray spectroscopy. Surface modification led to a greater volume of PW being treated by the membrane prior to drastic flux decline. The results indicate that tailoring the surface properties of the membrane enhances fouling resistance and could reduce pretreatment requirements.more » « less
-
Abstract Managing water resources has become one of the most pressing concerns of scientists in both academia and industry. Broadening access to nontraditional water feedstocks, such as brackish water, seawater and wastewater, requires a robust pretreatment process to prolong the lifetime and improve the efficiency of reverse osmosis treatment processes. Herein, pretreatment membranes with tunable hydrophilic characteristics and mechanical properties were developed through a facile and scalable technique. Specifically, poly(vinyl alcohol) (PVA) and poly(vinyl chloride) (PVC) were electrospun at various PVA‐to‐PVC mass ratios and then crosslinked with a poly(ethylene glycol) diacid. Fiber diameters and morphologies were characterized using scanning electron microscopy (SEM); Fourier transform infrared spectroscopy and confocal fluorescence microscopy further confirmed the presence of both polymers. Moreover, a rigorous analysis to map the PVA/PVC concentration was established to accurately determine the relative concentrations of the two polymers on the co‐spun mat. The crosslinking reaction noted above tuned the membrane porosity from 500 to 80 nm, as seen using SEM, and the mechanical properties were probed using tensile testing. The data revealed that the PVC content controlled the mechanical strength; moreover, higher PVA contents were expected to increase water permeation by enhancing the hydrophilicity, but the higher degree of crosslinking in these materials actually reduced water permeation. This work introduces a facile, scalable route for the manufacture of pretreatment membranes with tunable porosity, mechanical properties and water permeation behavior. © 2021 Society of Industrial Chemistry.