skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elucidating mechanisms of invasion success: Effects of parasite removal on growth and survival rates of invasive and native frogs
Abstract Identifying the mechanisms underlying biological invasions can inform the management of invasive species. The enemy release hypothesis (ERH) suggests that invasive species have a competitive advantage in their introduced range because they leave behind many of their predators and parasites from their native range, allowing them to shift resources from defences to growth, reproduction and dispersal. Many studies have demonstrated that invasive species have fewer parasites than their native counterparts, but few studies have tested whether the loss of these natural enemies appears to be a primary driver of the invasion process.To test the ERH, we conducted a mark–recapture study in which we used an anthelmintic drug to successfully reduce parasitic worms in invasive Cuban treefrogsOsteopilus septentrionalisand native treefrogs (Hylaspp.) at half of 12 wetlands, marking nearly 4,200 frogs. If the ERH is supported, we would expect that treating for parasitic worms would have a greater benefit to native than invasive hosts.Growth and survival rates of invasive and native treefrogs responded similarly to the anthelmintic treatment, suggesting that the Cuban treefrog's release from parasitic worms does not appear to significantly contribute to its invasiveness in established areas. Instead, it appears that the overall faster rates of growth and maturation, higher survival rates and larger body sizes of Cuban treefrogs that we observed may contribute to their expansion and proliferation.Synthesis and applications. Although Cuban treefrogs have a lower diversity of parasitic worms in their invasive than native range, this does not appear to significantly contribute to their invasion success in areas where they have been established for more than 20 years. This suggests that any manipulation of parasites in invasive or native hosts would not be an effective method of controlling Cuban treefrogs or reducing their impacts. Further research into other hypotheses is needed to explain the Cuban treefrog's success and help guide management actions to reduce their spread and negative impacts. Our study demonstrates that enemy release may not be a primary driver of invasiveness, highlighting the need for more experimental tests of the enemy release hypothesis to examine its generality.  more » « less
Award ID(s):
1947573
PAR ID:
10458230
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
57
Issue:
6
ISSN:
0021-8901
Page Range / eLocation ID:
p. 1078-1088
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Introduced hosts are capable of introducing parasite species and altering the abundance of parasites that are already present in native hosts, but few studies have compared the tolerances of native and invasive hosts to introduced parasites or identified the traits of introduced hosts that make them supershedders of non‐native parasites.Here, we compare the effects of a nematodeAplectana hamatospiculathat is native to Cuba but appears to be introduced to Florida on the native Floridian treefrog,Hyla femoralis, and on the Cuban treefrog (CTF),Osteopilus septentrionalis. We were particularly interested in CTFs because their introduction to Florida has led to reported declines of native treefrogs.In the laboratory, infection withA. hamatospiculacaused a greater loss in body mass ofH. femoralisthan CTFs despiteH. femoralisshedding fewer total worms in their faeces than CTFs. Field collections of CTFs,H. femoralis, and another native Floridian treefrog,H.squirella(Squirrel treefrog) from Tampa, FL also showed that CTFs shed more larval worms in their faeces than both native frogs when controlling for body size. Hence, the non‐native CTF is a supershedder of this non‐native parasite that is spilling over to less tolerant native treefrogs.Any conservation intervention to reduce the effects of CTFs on native treefrogs would benefit from knowing the traits that contribute to the invasive host being a supershedder of this parasite. Hence, we conducted necropsies on 330 CTFs to determine how host sex and body size affect the abundance ofA. hamatospicula, and two other common parasites in this species (acuariid nematodes and trematode metacercariae).There was a significant linear increase inA. hamatospiculaand encysted acuariids with CTF body size, but there was no detectable relationship between host body size and the intensity of metacercariae. Female CTFs were bigger, lived longer and, on average, had moreA. hamatospiculathan male CTFs.Synthesis and applications. These results of the study suggest that there is parasite spillover from the invasive Cuban treefrog (CTF) to native treefrogs in Florida. Additionally, at least some of the adverse effects of CTFs on native treefrogs could be caused by the introduction and amplification of this introduced parasite, and female and larger CTFs seem to be amplifying these infections more than males and smaller CTFs, respectively, suggesting that management could benefit from targeting these individuals. 
    more » « less
  2. Abstract The enemy release hypothesis (ERH) attributes the success of some exotic plant species to reduced top‐down effects of natural enemies in the non‐native range relative to the native range. Many studies have tested this idea, but very few have considered the simultaneous effects of multiple kinds of enemies on more than one invasive species in both the native and non‐native ranges. Here, we examined the effects of two important groups of natural enemies–insect herbivores and soil biota–on the performance ofTanacetum vulgare(native to Europe but invasive in the USA) andSolidago canadensis(native to the USA but invasive in Europe) in their native and non‐native ranges, and in the presence and absence of competition.In the field, we replicated full‐factorial experiments that crossed insecticide,T. vulgare–S. canadensiscompetition, and biogeographic range (Europe vs. USA) treatments. In greenhouses, we replicated full‐factorial experiments that crossed soil sterilization, plant–soil feedback, and biogeographic range treatments. We evaluated the effects of experimental treatments onT. vulgareandS. canadensisbiomass.The effects of natural enemies were idiosyncratic. In the non‐native range and relative to populations in the native range,T. vulgareescaped the negative effects of insect herbivores but not soil biota, depending upon the presence ofS. canadensis; andS. canadensisescaped the negative effects of soil biota but not insect herbivores, regardless of competition. Thus, biogeographic escape from natural enemies depended upon the enemies, the invader, and competition. Synthesis:By explicitly testing the ERH in terms of more than one kind of enemy, more than one invader, and more than one continent, this study enhances our nuanced perspective of how natural enemies can influence the performance of invasive species in their native and non‐native ranges. 
    more » « less
  3. null (Ed.)
    Introduced species pose a threat to biodiversity, and ecological and physiological factors are important in determining whether an introduced species becomes successfully established in a new region. Locomotor performance is one such factor that can influence the abundance and distribution of an introduced species. We investigated the effects of temperature and parasitism by the intestinal nematode Aplectana hamatospicula on the maximum jump distance and endurance in one invasive and two native treefrogs in Florida, USA. We collected frogs from the wild, estimated their parasite loads, and tested their locomotor performance at three temperatures. Contrary to expectations, invasive Cuban treefrogs (Osteopilus septentrionalis), which are adapted to a warmer climate in the Caribbean, outperformed pinewoods treefrogs (Hyla femoralis) and squirrel treefrogs (H. squirella) at each temperature, even when controlling for body size differences. In all three species, maximum jump distance was positively related to temperature, and this relationship was stronger for larger frogs. Parasites influenced both the maximum jump distance and endurance of frogs. In all three species, larger frogs jumped farther maximum distances than smaller frogs, but this relationship was stronger when frogs had lower, rather than higher, parasite loads. Parasitism had little effect on endurance in invasive frogs, but it tended to decrease the endurance of native frogs at high temperatures. Furthermore, at low temperatures, the lengths of consecutive jumps of infected native frogs tended to increase, suggesting that parasites limited the distances of initial jumps. Effects of temperature and parasites on the locomotor performance of frogs could influence their abilities to forage, escape predators, and disperse. The tremendous locomotor performance of O. septentrionalis, which is maintained across temperatures and parasite loads, likely contributes to the invasion success of this species. 
    more » « less
  4. Abstract The enemy release hypothesis (ERH) of plant invasion asserts that natural enemies limit populations of invasive plants more strongly in native ranges than in non‐native ranges. Despite considerable empirical attention, few studies have directly tested this idea, especially with respect to generalist herbivores. This knowledge gap is important because escaping the effects of generalists is a critical aspect of the ERH that may help explain successful plant invasions. Here, we used consumer exclosures and seed addition experiments to contrast the effects of granivorous rodents (an important guild of generalists) on the establishment of cheatgrass (Bromus tectorum) in western Asia, where cheatgrass is native, versus the Great Basin Desert, USA, where cheatgrass is exotic and highly invasive. Consistent with the ERH, rodent foraging reduced cheatgrass establishment by nearly 60% in western Asia but had no effect in the Great Basin. This main result corresponded with a region‐specific foraging pattern: rodents in the Great Basin but not western Asia generally avoided seeds from cheatgrass relative to seeds from native competitors. Our results suggest that enemy release from the effects of an important guild of generalists may contribute to the explosive success of cheatgrass in the Great Basin. These findings corroborate classic theory on enemy release and expand our understanding of how generalists can influence the trajectory of exotic plant invasions. 
    more » « less
  5. Abstract Nearly every terrestrial ecosystem hosts invasive ant species, and many of those ant species construct underground nests near roots and/or tend phloem‐feeding hemipterans on plants. We have a limited understanding of how these invasive ant behaviours change photosynthesis, carbohydrate availability and growth of woody plants.We measured photosynthesis, water relations, carbohydrate concentrations and growth for screenhouse‐rearedAcacia drepanolobiumsaplings on which we had manipulated invasivePheidole megacephalaants and nativeCeroplastessp. hemipterans to determine whether and how soil nesting and hemipteran tending by ants affect plant carbon dynamics. In a field study, we also compared leaf counts of vertebrate herbivore‐excluded and ‐exposed saplings in invaded and non‐invaded savannas to examine how ant invasion and vertebrate herbivory are associated with differences in sapling photosynthetic crown size.Though hemipteran infestations are often linked to declines in plant performance, our screenhouse experiment did not find an association between hemipteran presence and differences in plant physiology. However, we did find that soil nesting byP. megacephalaaround screenhouse plants was associated with >58% lower whole‐crown photosynthesis, >31% lower pre‐dawn leaf water potential, >29% lower sucrose concentrations in woody tissues and >29% smaller leaf areas. In the field, sapling crowns were 29% smaller in invaded savannas than in non‐invaded savannas, mimicking screenhouse results.Synthesis. We demonstrate that soil nesting near roots, a common behaviour byPheidole megacephalaand other invasive ants, can directly reduce carbon fixation and storage ofAcacia drepanolobiumsaplings. This mechanism is distinct from the disruption of a native ant mutualism byP. megacephala, which causes similar large declines in carbon fixation for matureA. drepanolobiumtrees.Acacia drepanolobiumalready has extremely low natural rates of recruitment from the sapling to mature stage, and we infer that these negative effects of invasion on saplings potentially curtail recruitment and reduce population growth in invaded areas. Our results suggest that direct interactions between invasive ants and plant roots in other ecosystems may strongly influence plant carbon fixation and storage. 
    more » « less