skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Atmosphere‐Mediated Scalable and Durable Biphilicity on Rationally Designed Structured Surfaces
Abstract

Biphilic surfaces having spatially distinct wetting have the potential to enable a plethora of applications ranging from fog harvesting, microfluidics, advanced manufacturing, and pumpless fluid transfer. However, complex and costly fabrication along with poor durability have hindered the widespread utilization of biphilic surfaces. Here, hierarchical biphilic micro/nanostructured surfaces passively functionalized by the atmosphere are demonstrated as a platform to create scalable and abrasion‐resistant biphilic interfaces. Biphilic hierarchical copper oxide (CuO) nanowires are fabricated on copper substrates via laser ablation followed by thermal oxidation. The surfaces spontaneously become globally superhydrophobic and locally hydrophilic due to the adsorption of airborne volatile organic compounds on the ultrahigh surface energy CuO nanowires. The curvature‐dependent spatial variation in nanowire morphology enables local roughness variation and wetting contrast without the need for selective functionalization. Coalescence‐induced droplet jumping and water vapor condensation experiments demonstrate global superhydrophobicity with discrete local hydrophilicity. In addition to enhanced fog harvesting rates, the surfaces are demonstrated to have repeatable self‐healing function with enhanced abrasion resistance compared to single‐tier structured surfaces. The work not only develops a facile method of fabricating scalable biphilic surfaces via nanoscale structure variation and atmosphere‐mediated surface modification, but also provides insights into the role of wetting contrast on droplet dynamics.

 
more » « less
PAR ID:
10458235
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
7
Issue:
13
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Massive studies concern the development of low‐carbon water and energy systems. Specifically, surfaces with special wettability to promote vapor‐to‐liquid condensation have been widely studied, but current solutions suffer from poor heat transfer performances due to inefficient droplet removal. In this study, the limit of condensation on a beetle‐inspired biphilic quasi‐liquid surface (QLS) in a steam environment is pushed, which provides a heat flux 100 times higher than that in atmospheric condensation. Unlike the beetle‐inspired surfaces that have sticky hydrophilic domains, the biphilic QLS consists of PEGylated and siloxane polymers as hydrophilic and hydrophobic quasi‐liquid patterns with the contact angle hysteresis of 3° and 1°, respectively. More importantly, each hydrophilic slippery pattern behaves like a slippery bridge that accelerates droplet coalescence and removal. As a result, the condensed droplets grow rapidly and shed off. It is demonstrated that the biphilic‐striped QLS shows a 60% higher water harvesting rate in atmospheric condensation and a 170% higher heat transfer coefficient in steam condensation than the conventional beetle‐inspired surface. This study provides a new paradigm to push the limit of condensation heat transfer at a high heat flux, which sheds light on the next‐generation surface design for water and energy sustainability.

     
    more » « less
  2. Abstract

    Wetting phenomena and superhydrophobic surfaces are ubiquitous in nature and have recently been explored widely in scientific and engineering applications. The understanding and control of surface superhydrophobicity are not only fundamentally intriguing but also practically important to provide unique and regulated functionalities to natural species and industrial applications. Here, the fundamentals of wetting phenomena are critically reviewed that especially apply to superhydrophobicity, putting an emphasis on the clarification of contact angles, the quantification of droplet retention force, and the role of contact line. The fundamentals of how the droplet retention is determined by the surface features are discussed and advanced analytical models for the prediction of contact angles and retentive forces are introduced. Applications are further discussed whose functionalities largely depend on the droplet retention, including directional droplet transport, anti‐icing, and water harvesting.

     
    more » « less
  3. Dropwise condensation is well known to result in better heat transfer performance owing to efficient condensate/droplet removal, which can be harnessed in various industrial heat/mass transfer applications such as power generation and conversion, water harvesting/desalination, and electronics thermal management. The key to enhancing condensation via the dropwise mode is thin low surface energy coatings (<100 nm) with low contact angle hysteresis. Ultrathin (<5 nm) silane self assembled monolayers (or SAMs) have been widely studied to promote dropwise condensation due to their minimal thermal resistance and scalable integration processes. Such thin coatings typically degrade within an hour during condensation of water vapor. After coating failure, water vapor condensation transitions to the inefficient filmwise mode with poor heat transfer performance. We enhance silane SAM quality and durability during water vapor condensation on copper compared to state of the art silane coatings on metal surfaces. We achieve this via (i) surface polishing to sub-10 nm levels, (ii) pure oxygen plasma surface treatment, and (iii) silane coating integration with the copper substrate in an anhydrous/moisture-free environment. The resulting silane SAM has low contact angle hysteresis (≈20°) and promotes efficient dropwise condensation of water for >360 hours without any visible sign of coating failure/degradation in the absence of non condensable gases. We further demonstrate enhanced heat transfer performance (≈5 7× increase over filmwise condensation) over an extended period of time. Surface characterization data post-condensation leads us to propose that in the absence of non-condensable gases in the vapor environment, the silane SAM degrades due to reduction and subsequent dissolution of copper oxide at the oligomer-substrate interface. The experiments also indicate that the magnitude of surface subcooling (or condensation rate) affects the rate of coating degradation. This work identifies a pathway to durable dropwise promoter coatings that will enable efficient heat transfer in industrial applications. 
    more » « less
  4. Nanostructured hydrophilic surfaces can enhance boiling processes due to the liquid wicking effect of the small surface structures, but consistently uniform nanoscale interstitial spaces would provide very few heterogeneous nucleation sites, which would require high superheat to activate in, for example, liquid water. Experiments indicate that surfaces of this type initiate onset of nucleate boiling at relatively low superheat levels, implying that larger-than-average interstitial spaces exist, apparently as a consequence of larger micron-scale variations of the surface structure or surface chemistry (wetting) resulting from the fabrication process. The investigation summarized here explores the potential correlation between nanostructured surface morphology variations and onset of nucleation. A zinc oxide nanostructured coating was fabricated on a copper substrate for experiments and analysis in this study. The coated surface was subjected to water droplet deposition tests to evaluate wicking and contact angle, followed by vaporization tests at varying surface superheat levels, and extensive electron microscopy imaging of the surface. The results of the vaporization experiments deter- mined the variation of mean heat flux to the droplet as a function of superheat, and high-speed videos documented the superheat at which onset of nucleate boiling (ONB) occurs and variation of nucleation site density with superheat. Image analysis of the electron microscopy images were used to assess the variability of pore size and surface complexity (entropy) over the surface. By determining macroscope bubble nucleation and boiling performance from measured data and high-speed video records for these surfaces, and simultaneously analyzing the morphology of that surface at the micro/nano scale, our data demonstrates the correlation between surface morphology variations and ONB and nucleate boiling active site density. Specifically, our results indicate that increased irregularities in the surface morphology correspond to enhanced probability of nucleation onset and an increase in active nucleation site density as superheat increases. Our data indicates the range of irregularity number density val- ues (number per square millimeter) and the imperfection features that give rise to consistent low superheat ONB (∼ 15◦𝐶), leads to a robust increase in active site density during nucleate boiling as super heat increases. This information can help guide development of enhanced boiling surfaces by providing insight into the frequency of nanosurface morphology variations, per square millimeter, that enhance nucleation onset while also providing enhanced wicking and low contact angle over most of the surface. The implication of these results for design of different types of enhanced boiling surfaces is also discussed. 
    more » « less
  5. Nanostructured hydrophilic surfaces can enhance boiling processes due to the liquid wicking effect of the small surface structures, but consistently uniform nanoscale interstitial spaces would provide very few heterogeneous nucleation sites, which would require high superheat to activate in, for example, liquid water. Experiments indicate that surfaces of this type initiate onset of nucleate boiling at relatively low superheat levels, implying that larger-than-average interstitial spaces exist, apparently as a consequence of larger micron-scale variations of the surface structure or surface chemistry (wetting) resulting from the fabrication process. The investigation summarized here explores the potential correlation between nanostructured surface morphology variations and onset of nucleation. A zinc oxide nanostructured coating was fabricated on a copper substrate for experiments and analysis in this study. The coated surface was subjected to water droplet deposition tests to evaluate wicking and contact angle, followed by vaporization tests at varying surface superheat levels, and extensive electron microscopy imaging of the surface. The results of the vaporization experiments determined the variation of mean heat flux to the droplet as a function of superheat, and high-speed videos documented the superheat at which onset of nucleate boiling (ONB) occurs and variation of nucleation site density with superheat. Image analysis of the electron microscopy images were used to assess the variability of pore size and surface complexity (entropy) over the surface. By determining macroscope bubble nucleation and boiling performance from measured data and high-speed video records for these surfaces, and simultaneously analyzing the morphology of that surface at the micro/nano scale, our data demonstrates the correlation between surface morphology variations and ONB and nucleate boiling active site density. Specifically, our results indicate that increased irregularities in the surface morphology correspond to enhanced probability of nucleation onset and an increase in active nucleation site density as superheat increases. Our data indicates the range of irregularity number density values (number per square millimeter) and the imperfection features that give rise to consistent low superheat ONB (∼ 15◦𝐶), leads to a robust increase in active site density during nucleate boiling as super heat increases. This information can help guide development of enhanced boiling surfaces by providing insight into the frequency of nanosurface morphology variations, per square millimeter, that enhance nucleation onset while also providing enhanced wicking and low contact angle over most of the surface. The implication of these results for design of different types of enhanced boiling surfaces is also discussed. 
    more » « less