skip to main content


Title: Pt‐Ir‐Pd Trimetallic Nanocages as a Dual Catalyst for Efficient Oxygen Reduction and Evolution Reactions in Acidic Media
Abstract

The development of dual catalysts with high efficiency toward oxygen reduction and evolution reactions (ORR and OER) in acidic media is a significant challenge. Here an active and durable dual catalyst based upon cubic Pt39Ir10Pd11nanocages with an average edge length of 12.3 nm, porous walls as thin as 1.0 nm, and well‐defined {100} facets is reported. The trimetallic nanocages perform better than all the reported dual catalysts in acidic media, with a low ORR‐OER overpotential gap of only 704 mV at a Pt‐Ir‐Pd loading of 16.8 µgPt+Ir+Pdcm−2geo. For ORR at 0.9 V, when benchmarked against the commercial Pt/C and Pt‐Pd nanocages, the trimetallic nanocages exhibit an enhanced mass activity of 0.52 A mg−1Pt+Ir+Pd(about four and two times as high as those of the Pt/C and Pt‐Pd nanocages) and much improved durability. For OER, the trimetallic nanocages show a remarkable mass activity of 0.20 A mg−1Pt+Irat 1.53 V, which is 16.7 and 4.3 fold relative to those of the Pt/C and Pt‐Pd nanocages, respectively. These improvements can be ascribed to the highly open structure of the nanocages, and the possible electronic coupling between Ir and Pt atoms in the lattice.

 
more » « less
Award ID(s):
1804970
NSF-PAR ID:
10458250
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
10
Issue:
16
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The harsh working environments of proton exchange membrane fuel cells (PEMFCs) pose huge challenges to the stability of Pt‐based alloy catalysts. The widespread presence of metallic bonds with significantly delocalized electron distribution often lead to component segregation and rapid performance decay. Here we report L10−Pt2CuGa intermetallic nanoparticles with a unique covalent atomic interaction between Pt−Ga as high‐performance PEMFC cathode catalysts. The L10−Pt2CuGa/C catalyst shows superb oxygen reduction reaction (ORR) activity and stability in fuel cell cathode (mass activity=0.57 A mgPt−1at 0.9 V, peak power density=2.60/1.24 W cm−2in H2‐O2/air, 28 mV voltage loss at 0.8 A cm−2after 30 000 cycles). Theoretical calculations reveal the optimized adsorption of oxygen intermediates via the formed biaxial strain on L10−Pt2CuGa surface, and the durability enhancement stems from the stronger Pt−M bonds than those in L11−PtCu resulted from Pt−Ga covalent interactions.

     
    more » « less
  2. Abstract

    The harsh working environments of proton exchange membrane fuel cells (PEMFCs) pose huge challenges to the stability of Pt‐based alloy catalysts. The widespread presence of metallic bonds with significantly delocalized electron distribution often lead to component segregation and rapid performance decay. Here we report L10−Pt2CuGa intermetallic nanoparticles with a unique covalent atomic interaction between Pt−Ga as high‐performance PEMFC cathode catalysts. The L10−Pt2CuGa/C catalyst shows superb oxygen reduction reaction (ORR) activity and stability in fuel cell cathode (mass activity=0.57 A mgPt−1at 0.9 V, peak power density=2.60/1.24 W cm−2in H2‐O2/air, 28 mV voltage loss at 0.8 A cm−2after 30 000 cycles). Theoretical calculations reveal the optimized adsorption of oxygen intermediates via the formed biaxial strain on L10−Pt2CuGa surface, and the durability enhancement stems from the stronger Pt−M bonds than those in L11−PtCu resulted from Pt−Ga covalent interactions.

     
    more » « less
  3. Abstract

    Bifunctional oxygen catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with high activities and low‐cost are of prime importance and challenging in the development of fuel cells and rechargeable metal–air batteries. This study reports a porous carbon nanomaterial loaded with cobalt nanoparticles (Co@NC‐x/y) derived from pyrolysis of a Co/Zn bimetallic zeolitic imidazolite framework, which exhibits incredibly high activity as bifunctional oxygen catalysts. For instance, the optimal catalyst of Co@NC‐3/1 has the interconnected framework structure between porous carbon and embedded carbon nanotubes, which shows the superb ORR activity with onset potential of ≈1.15 V and half‐wave potential of ≈0.93 V. Moreover, it presents high OER activity that can be further enhanced to over commercial RuO2by P‐doped with overpotentials of 1.57 V versus reversible hydrogen electrode at 10 mA cm−2and long‐term stability for 2000 circles and a Tafel slope of 85 mV dec−1. Significantly, the nanomaterial demonstrates better catalytic performance and durability than Pt/C for ORR and commercial RuO2and IrO2for OER. These findings suggest the importance of a synergistic effect of graphitic carbon, nanotubes, exposed Co–Nxactive sites, and interconnected framework structure of various carbons for bifunctional oxygen electrocatalysts.

     
    more » « less
  4. Activity, cost, and durability are the trinity of catalysis research for the electrochemical oxygen reduction reaction (ORR). While studies towards increasing activity and reducing cost of ORR catalysts have been carried out extensively, much effort is needed in durability investigation of highly active ORR catalysts. In this work, we examined the stability of a trimetallic PtPdCu catalyst that has demonstrated high activity and incredible durability during ORR using density functional theory (DFT) based computations. Specifically, we studied the processes of dissolution/deposition and diffusion between the surface and inner layer of Cu species of Pt 20 Pd 20 Cu 60 catalysts at electrode potentials up to 1.2 V to understand their role towards stabilizing Pt 20 Pd 20 Cu 60 catalysts. The results show there is a dynamic Cu surface composition range that is dictated by the interplay of the four processes, dissolution, deposition, diffusion from the surface to inner layer, and diffusion from the inner layer to the surface of Cu species, in the stability and observed oscillation of lattice constants of Cu-rich PtPdCu nanoalloys. 
    more » « less
  5. Abstract

    Developing efficient and anti‐corrosive oxygen reduction reaction (ORR) catalysts is of great importance for the applications of proton exchange membrane fuel cells (PEMFCs). Herein, we report a novel approach to prepare metal oxides supported intermetallic Pt alloy nanoparticles (NPs) via the reactive metal‐support interaction (RMSI) as ORR catalysts, using Ni‐doped cubic ZrO2(Ni/ZrO2) supported L10−PtNi NPs as a proof of concept. Benefiting from the Ni migration during RMSI, the oxygen vacancy concentrations in the support are increased, leading to an electron enrichment of Pt. The optimal L10−PtNi−Ni/ZrO2−RMSI catalyst achieves remarkably low mass activity (MA) loss (17.8 %) after 400,000 accelerated durability test cycles in a half‐cell and exceptional PEMFC performance (MA=0.76 A mgPt−1at 0.9 V, peak power density=1.52/0.92 W cm−2in H2−O2/−air, and 18.4 % MA decay after 30,000 cycles), representing the best reported Pt‐based ORR catalysts without carbon supports. Density functional theory (DFT) calculations reveal that L10−PtNi−Ni/ZrO2−RMSI requires a lower energetic barrier for ORR than L10−PtNi−Ni/ZrO2(direct loading), which is ascribed to a decreased Bader charge transfer between Pt and *OH, and the improved stability of L10−PtNi−Ni/ZrO2−RMSI compared to L10−PtNi−C can be contributed to the increased adhesion energy and Ni vacancy formation energy within the PtNi alloy.

     
    more » « less