skip to main content


Title: Subtle biogeochemical regimes in the Indian Ocean revealed by spatial and diel frequency of Prochlorococcus haplotypes
Abstract

While the majority of studies use the environment to describe microbial populations, the high diversity of microbes can conversely be used as a resource to understand subtle environmental variability. Here, we used a high‐resolution spatial and temporal analysis ofProchlorococcussp. in the Eastern Indian Ocean to determine whether ecotypes and microdiverse taxa can be used to identify fine‐scale biogeochemical regimes in this under‐studied region. A total of 246 DNA samples were collected every 4–6 h in April 2016 on GO‐SHIP cruise I09N, which transected gyre, equatorial, and monsoonal ecosystems between Western Australia and the Bay of Bengal. Using amplicon sequencing of the highly variablerpoC1 marker, we found that the region was largely dominated by theProchlorococcusHL‐II clade. Conserved single nucleotide polymorphisms (SNPs) were used to identify four microdiverse haplotypes, or SNP‐delineated taxa, within the HL‐II clade ofProchlorococcus. The haplotypes showed regional patterns of relative gene count abundance that were significantly correlated with environmental conditions. Additionally, we used nonlinear least squares models to fit the sine wave function to our data and demonstrate that the haplotypes show distinct patterns in relative diel frequency, providing evidence that these microdiverse populations are ecologically and evolutionarily distinct. Overall, we show how the integration of a genomics data set into a biogeochemical framework can reveal a more nuanced understanding of a complex ocean basin.

 
more » « less
PAR ID:
10458308
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
65
Issue:
S1
ISSN:
0024-3590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Synechococcus, a genus of unicellular cyanobacteria found throughout the global surface ocean, is a large driver of Earth's carbon cycle. Developing a better understanding of its diversity and distributions is an ongoing effort in biological oceanography. Here, we introduce 12 new draft genomes of marineSynechococcusisolates spanning five clades and utilize ~100 environmental metagenomes largely sourced from the TARA Oceans project to assess the global distributions of the genomic lineages they and other reference genomes represent. We show that five newly provided clade‐II isolates are by far the most representative of the recoveredin situpopulations (most ‘abundant’) and have biogeographic distributions distinct from previously available clade‐II references. Additionally, these isolates form a subclade possessing the smallest genomes yet identified of the genus (2.14 ± 0.05Mbps; mean ± 1SD) while concurrently hosting some of the highest GC contents (60.67 ± 0.16%). This is in direct opposition to the pattern inSynechococcus’s nearest relative,Prochlorococcus– wherein decreasing genome size has coincided with a strongdecreasein GC content – suggesting this new subclade ofSynechococcusappears to have convergently undergone genomic reduction relative to the rest of the genus, but along a fundamentally different evolutionary trajectory.

     
    more » « less
  2. Dubilier, Nicole (Ed.)
    ABSTRACT

    Prochlorococcusis an abundant photosynthetic bacterium in the open ocean, where nitrogen (N) often limits phytoplankton growth. In the low-light-adapted LLI clade ofProchlorococcus, nearly all cells can assimilate nitrite (NO2), with a subset capable of assimilating nitrate (NO3). LLI cells are maximally abundant near the primary NO2maximum layer, an oceanographic feature that may, in part, be due to incomplete assimilatory NO3reduction and subsequent NO2release by phytoplankton. We hypothesized that someProchlorococcusexhibit incomplete assimilatory NO3reduction and examined NO2accumulation in cultures of threeProchlorococcusstrains (MIT0915, MIT0917, and SB) and twoSynechococcusstrains (WH8102 and WH7803). Only MIT0917 and SB accumulated external NO2during growth on NO3. Approximately 20–30% of the NO3transported into the cell by MIT0917 was released as NO2, with the rest assimilated into biomass. We further observed that co-cultures using NO3as the sole N source could be established for MIT0917 andProchlorococcusstrain MIT1214 that can assimilate NO2but not NO3. In these co-cultures, the NO2released by MIT0917 is efficiently consumed by its partner strain, MIT1214. Our findings highlight the potential for emergent metabolic partnerships that are mediated by the production and consumption of N cycle intermediates withinProchlorococcuspopulations.

    IMPORTANCE

    Earth’s biogeochemical cycles are substantially driven by microorganisms and their interactions. Given that N often limits marine photosynthesis, we investigated the potential for N cross-feeding within populations ofProchlorococcus, the numerically dominant photosynthetic cell in the subtropical open ocean. In laboratory cultures, someProchlorococcuscells release extracellular NO2during growth on NO3. In the wild,Prochlorococcuspopulations are composed of multiple functional types, including those that cannot use NO3but can still assimilate NO2. We show that metabolic dependencies arise whenProchlorococcusstrains with complementary NO2production and consumption phenotypes are grown together on NO3. These findings demonstrate the potential for emergent metabolic partnerships, possibly modulating ocean nutrient gradients, that are mediated by cross-feeding of N cycle intermediates.

     
    more » « less
  3. Abstract

    Establishing links between microbial diversity and environmental processes requires resolving the high degree of functional variation among closely related lineages or ecotypes. Here, we implement and validate an improved metagenomic approach that estimates the spatial biogeography and environmental regulation of ecotype-specific replication patterns (RObs) across ocean regions. A total of 719 metagenomes were analyzed from meridional Bio-GO-SHIP sections in the Atlantic and Indian Ocean. Accounting for sequencing bias and anchoring replication estimates in genome structure were critical for identifying physiologically relevant biological signals. For example, ecotypes within the dominant marine cyanobacteria Prochlorococcus exhibited distinct diel cycles in RObs that peaked between 19:00–22:00. Additionally, both Prochlorococcus ecotypes and ecotypes within the highly abundant heterotroph Pelagibacter (SAR11) demonstrated systematic biogeographies in RObs that differed from spatial patterns in relative abundance. Finally, RObs was significantly regulated by nutrient stress and temperature, and explained by differences in the genomic potential for nutrient transport, energy production, cell wall structure, and replication. Our results suggest that our new approach to estimating replication is reflective of gross population growth. Moreover, this work reveals that the interaction between adaptation and environmental change drives systematic variability in replication patterns across ocean basins that is ecotype-specific, adding an activity-based dimension to our understanding of microbial niche space.

     
    more » « less
  4. Abstract

    Through infection and lysis of their coexisting bacterial hosts, viruses impact the biogeochemical cycles sustaining globally significant pelagic oceanic ecosystems. Currently, little is known of the ecological interactions between lytic viruses and their bacterial hosts underlying these biogeochemical impacts at ecosystem scales. This study focused on populations of lytic viruses carrying the B12-dependent Class II monomeric ribonucleotide reductase (RNR) gene, ribonucleotide-triphosphate reductase (Class II RTPR), documenting seasonal changes in pelagic virioplankton and bacterioplankton using amplicon sequences of Class II RTPR and the 16S rRNA gene, respectively. Amplicon sequence libraries were analyzed using compositional data analysis tools that account for the compositional nature of these data. Both virio- and bacterioplankton communities responded to environmental changes typically seen across seasonal cycles as well as shorter term upwelling–downwelling events. Defining Class II RTPR-carrying viral populations according to major phylogenetic clades proved a more robust means of exploring virioplankton ecology than operational taxonomic units defined by percent sequence homology. Virioplankton Class II RTPR populations showed positive associations with a broad phylogenetic diversity of bacterioplankton including dominant taxa within pelagic oceanic ecosystems such as Prochlorococcus and SAR11. Temporal changes in Class II RTPR virioplankton, occurring as both free viruses and within infected cells, indicated possible viral–host pairs undergoing sustained infection and lysis cycles throughout the seasonal study. Phylogenetic relationships inferred from Class II RTPR sequences mirrored ecological patterns in virio- and bacterioplankton populations demonstrating possible genome to phenome associations for an essential viral replication gene.

     
    more » « less
  5. Casotti, Raffaella (Ed.)

    Mesoscale oceanographic features, including eddies, have the potential to alter productivity and other biogeochemical rates in the ocean. Here, we examine the microbiome of a cyclonic, Gulf Stream frontal eddy, with a distinct origin and environmental parameters compared to surrounding waters, in order to better understand the processes dominating microbial community assembly in the dynamic coastal ocean. Our microbiome-based approach identified the eddy as distinct from the surround Gulf Stream waters. The eddy-associated microbial community occupied a larger area than identified by temperature and salinity alone, increasing the predicted extent of eddy-associated biogeochemical processes. While the eddy formed on the continental shelf, after two weeks both environmental parameters and microbiome composition of the eddy were most similar to the Gulf Stream, suggesting the effect of environmental filtering on community assembly or physical mixing with adjacent Gulf Stream waters. In spite of the potential for eddy-driven upwelling to introduce nutrients and stimulate primary production, eddy surface waters exhibit lower chlorophyllaalong with a distinct and less even microbial community, compared to the Gulf Stream. At the population level, the eddy microbiome exhibited differences among the cyanobacteria (e.g. lowerTrichodesmiumand higherProchlorococcus) and in the heterotrophic alpha Proteobacteria (e.g. lower relative abundances of specific SAR11 phylotypes) versus the Gulf Stream. However, better delineation of the relative roles of processes driving eddy community assembly will likely require following the eddy and surrounding waters since inception. Additionally, sampling throughout the water column could better clarify the contribution of these mesoscale features to primary production and carbon export in the oceans.

     
    more » « less