Abstract We investigated the photosensitizing properties of secondary organic aerosol (SOA) formed during the hydroxyl radical (OH) initiated oxidation of naphthalene. This SOA was injected into an aerosol flow tube and exposed to UV radiation and gaseous volatile organic compounds or sulfur dioxide (SO2). The aerosol particles were observed to grow in size by photosensitized uptake of d‐limonene and β‐pinene. In the presence of SO2, a photosensitized production (0.2–0.3 µg m−3 h−1) of sulfate was observed at all relative humidity (RH) levels. Some sulfate also formed on particles in the dark, probably due to the presence of organic peroxides. The dark and photochemical pathways exhibited different trends with RH, unraveling different contributions from bulk and surface chemistry. As naphthalene and other polycyclic aromatics are important SOA precursors in the urban and suburban areas, these dark and photosensitized reactions are likely to play an important role in sulfate and SOA formation.
more »
« less
Sulfur Dioxide Modifies Aerosol Particle Formation and Growth by Ozonolysis of Monoterpenes and Isoprene
Abstract The effect of sulfur dioxide on particle formation and growth by ozonolysis of three monoterpenes (α‐pinene,β‐pinene, and limonene) and isoprene was investigated in the presence of monodisperse ammonium sulfate seed particles and an OH scavenger in a flow tube under dry conditions. Without sulfur dioxide, new particle formation was not observed, and seed particle growth was consistent with condensation of low‐volatility oxidation products produced from each organic precursor. With sulfur dioxide, new particle formation was observed from every precursor studied, consistent with sulfuric acid formation by reaction of sulfur dioxide with stabilized Criegee Intermediates. The presence of sulfur dioxide did not significantly affect seed particle growth rates fromα‐pinene and limonene ozonolysis, although chemical composition measurements revealed the presence of organosulfates in the particles following SO2exposure. Contrarily, the growth of seeds byβ‐pinene and isoprene ozonolysis was considerably enhanced by sulfur dioxide, and chemical composition measurements revealed that the enhanced growth was not due to additional organic material, suggesting that inorganic sulfate was likely responsible. The results suggest that a previously unconsidered particle‐phase pathway to growth activated by sulfur dioxide may alter production of cloud condensation nuclei over regions with significant SO2‐alkene interactions.
more »
« less
- PAR ID:
- 10458318
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 124
- Issue:
- 8
- ISSN:
- 2169-897X
- Page Range / eLocation ID:
- p. 4800-4811
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Laboratory chambers, invaluable in atmospheric chemistry and aerosol formation studies, are subject to particle and vapor wall deposition, processes that need to be accounted for in order to accurately determine secondary organic aerosol (SOA) mass yields. Although particle wall deposition is reasonably well understood and usually accounted for, vapor wall deposition is less so. The effects of vapor wall deposition on SOA mass yields in chamber experiments can be constrained experimentally by increasing the seed aerosol surface area to promote the preferential condensation of SOA-forming vapors onto seed aerosol. Here, we study the influence of seed aerosol surface area and oxidation rate on SOA formation in α-pinene ozonolysis. The observations are analyzed using a coupled vapor–particle dynamics model to interpret the roles of gas–particle partitioning (quasi-equilibrium vs. kinetically limited SOA growth) and α-pinene oxidation rate in influencing vapor wall deposition. We find that the SOA growth rate and mass yields are independent of seed surface area within the range of seed surface area concentrations used in this study. This behavior arises when the condensation of SOA-forming vapors is dominated by quasi-equilibrium growth. Faster α-pinene oxidation rates and higher SOA mass yields are observed at increasing O3 concentrations for the same initial α-pinene concentration. When the α-pinene oxidation rate increases relative to vapor wall deposition, rapidly produced SOA-forming oxidation products condense more readily onto seed aerosol particles, resulting in higher SOA mass yields. Our results indicate that the extent to which vapor wall deposition affects SOA mass yields depends on the particular volatility organic compound system and can be mitigated through the use of excess oxidant concentrations.more » « less
-
Particles containing secondary organic material (SOM) are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid–liquid phase separation (LLPS) occurs at high relative humidity (RH) (greater than ∼ 95 %) in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than ∼ 95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C) of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.more » « less
-
The daytime oxidation of biogenic hydrocarbons is attributed to both OH radicals and O3, while nighttime chemistry is dominated by the reaction with O3 and NO3 radicals. Here, the diurnal pattern of Secondary Organic Aerosol (SOA) originating from biogenic hydrocarbons was intensively evaluated under varying environmental conditions (temperature, humidity, sunlight intensity, NOx levels, and seed conditions) by using the UNIfied Partitioning Aerosol phase Reaction (UNIPAR) model, which comprises multiphase gas-particle partitioning and in-particle chemistry. The oxidized products of three different hydrocarbons (isoprene, α-pinene, and β-caryophyllene) were predicted by using near explicit gas mechanisms for four different oxidation paths (OH, O3, NO3, and O(3P)) during day and night. The gas mechanisms implemented the Master Chemical Mechanism (MCM v3.3.1), the reactions that formed low volatility products via peroxy radical (RO2) autoxidation, and self- and cross-reactions of nitrate-origin RO2. In the model, oxygenated products were then classified into volatility-reactivity base lumping species, which were dynamically constructed under varying NOx levels and aging scales. To increase feasibility, the UNIPAR model that equipped mathematical equations for stoichiometric coefficients and physicochemical parameters of lumping species was integrated with the SAPRC gas mechanism. The predictability of the UNIPAR model was demonstrated by simulating chamber-generated SOA data under varying environments day and night. Overall, the SOA simulation decoupled to each oxidation path indicated that the nighttime isoprene SOA formation was dominated by the NO3-driven oxidation, regardless of NOx levels. However, the oxidation path to produce the nighttime α-pinene SOA gradually transited from the NO3-initiated reaction to ozonolysis as NOx levels decreased. For daytime SOA formation, both isoprene and α-pinene were dominated by the OH-radical initiated oxidation. The contribution of the O(3P) path to all biogenic SOA formation was negligible in daytime. Sunlight during daytime promotes the decomposition of oxidized products via photolysis and thus, reduces SOA yields. Nighttime α-pinene SOA yields were significantly higher than daytime SOA yields, although the nighttime α-pinene SOA yields gradually decreased with decreasing NOx levels. For isoprene, nighttime chemistry yielded higher SOA mass than daytime at the higher NOx level (isoprene/NOx > 5 ppbC/ppb). The daytime isoprene oxidation at the low NOx level formed epoxy-diols that significantly contributed SOA formation via heterogeneous chemistry. For isoprene and α-pinene, daytime SOA yields gradually increased with decreasing NOx levels. The daytime SOA produced more highly oxidized multifunctional products and thus, it was generally more sensitive to the aqueous reactions than the nighttime SOA. β-Caryophyllene, which rapidly oxidized and produced SOA with high yields, showed a relatively small variation in SOA yields from changes in environmental conditions (i.e., NOx levels, seed conditions, and diurnal pattern), and its SOA formation was mainly attributed to ozonolysis day and night. To mimic the nighttime α-pinene SOA formation under the polluted urban atmosphere, α-pinene SOA formation was simulated in the presence of gasoline fuel. The simulation suggested the growth of α-pinene SOA in the presence of gasoline fuel gas by the enhancement of the ozonolysis path under the excess amount of ozone, which is typical in urban air. We concluded that the oxidation of the biogenic hydrocarbon with O3 or NO3 radicals is a source to produce a sizable amount of nocturnal SOA, despite of the low emission at night.more » « less
-
Volatile organic matter that is suspended in the atmosphere such as α-Pinene and β-caryophyllene undergoes aging processes, as well as chemical and photooxidation reactions to create secondary organic aerosol (SOA), which can influence the indirect effect of aerosol particles and the radiative budget. The presence and impact of water vapor and ammonium sulfate (ubiquitous species in the atmosphere) on the hygroscopicity and CCN activity of SOA has not been well characterized. In this research, three water-uptake measurement methods: cavity ring-down spectroscopy (CRD), humidified tandem differential mobility analysis (HTDMA), and cloud condensation nuclei counting (CCNC) were employed to study the hygroscopicity of α-pinene and β-caryophyllene SOA formed under dark ozonolysis. We observed the changes in water uptake of SOA in the absence and presence of water vapor at ~70 % RH and ammonium sulfate seeds. Measured hygroscopicity was represented by the single hygroscopicity parameter (κ). κ of α-pinene SOA was measured to be 0.04 and can increase up to 0.19 in the presence of water vapor and ammonium sulfate. β-caryophyllene SOA exhibited non-hygroscopic properties with κ values that were effectively 0. It is proposed that a difference in the viscosity and hydrophobicity of the SOA may be the primary factor that leads to changes in hygroscopicity.more » « less
An official website of the United States government
