skip to main content


Title: Sulfur Dioxide Modifies Aerosol Particle Formation and Growth by Ozonolysis of Monoterpenes and Isoprene
Abstract

The effect of sulfur dioxide on particle formation and growth by ozonolysis of three monoterpenes (α‐pinene,β‐pinene, and limonene) and isoprene was investigated in the presence of monodisperse ammonium sulfate seed particles and an OH scavenger in a flow tube under dry conditions. Without sulfur dioxide, new particle formation was not observed, and seed particle growth was consistent with condensation of low‐volatility oxidation products produced from each organic precursor. With sulfur dioxide, new particle formation was observed from every precursor studied, consistent with sulfuric acid formation by reaction of sulfur dioxide with stabilized Criegee Intermediates. The presence of sulfur dioxide did not significantly affect seed particle growth rates fromα‐pinene and limonene ozonolysis, although chemical composition measurements revealed the presence of organosulfates in the particles following SO2exposure. Contrarily, the growth of seeds byβ‐pinene and isoprene ozonolysis was considerably enhanced by sulfur dioxide, and chemical composition measurements revealed that the enhanced growth was not due to additional organic material, suggesting that inorganic sulfate was likely responsible. The results suggest that a previously unconsidered particle‐phase pathway to growth activated by sulfur dioxide may alter production of cloud condensation nuclei over regions with significant SO2‐alkene interactions.

 
more » « less
Award ID(s):
1649694 1649719
NSF-PAR ID:
10458318
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
124
Issue:
8
ISSN:
2169-897X
Page Range / eLocation ID:
p. 4800-4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The daytime oxidation of biogenic hydrocarbons is attributed to both OH radicals and O3, while nighttime chemistry is dominated by the reaction with O3 and NO3 radicals. Here, the diurnal pattern of Secondary Organic Aerosol (SOA) originating from biogenic hydrocarbons was intensively evaluated under varying environmental conditions (temperature, humidity, sunlight intensity, NOx levels, and seed conditions) by using the UNIfied Partitioning Aerosol phase Reaction (UNIPAR) model, which comprises multiphase gas-particle partitioning and in-particle chemistry. The oxidized products of three different hydrocarbons (isoprene, α-pinene, and β-caryophyllene) were predicted by using near explicit gas mechanisms for four different oxidation paths (OH, O3, NO3, and O(3P)) during day and night. The gas mechanisms implemented the Master Chemical Mechanism (MCM v3.3.1), the reactions that formed low volatility products via peroxy radical (RO2) autoxidation, and self- and cross-reactions of nitrate-origin RO2. In the model, oxygenated products were then classified into volatility-reactivity base lumping species, which were dynamically constructed under varying NOx levels and aging scales. To increase feasibility, the UNIPAR model that equipped mathematical equations for stoichiometric coefficients and physicochemical parameters of lumping species was integrated with the SAPRC gas mechanism. The predictability of the UNIPAR model was demonstrated by simulating chamber-generated SOA data under varying environments day and night. Overall, the SOA simulation decoupled to each oxidation path indicated that the nighttime isoprene SOA formation was dominated by the NO3-driven oxidation, regardless of NOx levels. However, the oxidation path to produce the nighttime α-pinene SOA gradually transited from the NO3-initiated reaction to ozonolysis as NOx levels decreased. For daytime SOA formation, both isoprene and α-pinene were dominated by the OH-radical initiated oxidation. The contribution of the O(3P) path to all biogenic SOA formation was negligible in daytime. Sunlight during daytime promotes the decomposition of oxidized products via photolysis and thus, reduces SOA yields. Nighttime α-pinene SOA yields were significantly higher than daytime SOA yields, although the nighttime α-pinene SOA yields gradually decreased with decreasing NOx levels. For isoprene, nighttime chemistry yielded higher SOA mass than daytime at the higher NOx level (isoprene/NOx > 5 ppbC/ppb). The daytime isoprene oxidation at the low NOx level formed epoxy-diols that significantly contributed SOA formation via heterogeneous chemistry. For isoprene and α-pinene, daytime SOA yields gradually increased with decreasing NOx levels. The daytime SOA produced more highly oxidized multifunctional products and thus, it was generally more sensitive to the aqueous reactions than the nighttime SOA. β-Caryophyllene, which rapidly oxidized and produced SOA with high yields, showed a relatively small variation in SOA yields from changes in environmental conditions (i.e., NOx levels, seed conditions, and diurnal pattern), and its SOA formation was mainly attributed to ozonolysis day and night. To mimic the nighttime α-pinene SOA formation under the polluted urban atmosphere, α-pinene SOA formation was simulated in the presence of gasoline fuel. The simulation suggested the growth of α-pinene SOA in the presence of gasoline fuel gas by the enhancement of the ozonolysis path under the excess amount of ozone, which is typical in urban air. We concluded that the oxidation of the biogenic hydrocarbon with O3 or NO3 radicals is a source to produce a sizable amount of nocturnal SOA, despite of the low emission at night. 
    more » « less
  2. The effect of precursor molecular structural features on secondary organic aerosol (SOA) growth was investigated for a number of precursor functional groups. SOA yields were determined for straight chain alkanes, some oxygenated, up to highly functionalized hydrocarbons, the largest being β-caryophyllene. Organic SOA yield was determined by comparing to standard particle size changes with SO 2 in a photolytic flow reactor. SOA formation was initiated with OH radicals from HONO photolysis and continued with NO and NO 2 present at single-digit nmol/mol levels. Seed particles of ∼10 nm diameter grew by condensation of SOA material and growth was monitored with a nanoparticle sizing system. Cyclic compounds dominate as the highest SOA yielding structural feature, followed by C-10 species with double bonds, with linear alkanes and isoprene most ineffective. Carbonyls led to significant increases in growth compared to the alkanes while alcohols, triple-bond compounds, aromatics, and epoxides were only slightly more effective than alkanes at producing SOA. When more than one double bond is present, or a double bond is present with another functional group as seen with 1, 2-epoxydec-9-ene, SOA yield is notably increased. Placement of the double bond is important as well with β-pinene having an SOA yield approximately 5 times that of α-pinene. In our photolytic flow reactor, first-generation oxidation products are presumed to be the primary species contributing to SOA thus the molecular structure of the precursor is determinant. We also conducted proton-transfer mass spectrometry measurements of α-pinene photooxidation and significant signals were observed at masses for multifunctional nitrates and possibly peroxy radicals. The mass spectrometer measurements were also used to estimate a HONO photolysis rate. 
    more » « less
  3. Abstract. Biogenic organic precursors play an important role inatmospheric new particle formation (NPF). One of the major precursor speciesis α-pinene, which upon oxidation can form a suite of productscovering a wide range of volatilities. Highly oxygenated organic molecules(HOMs) comprise a fraction of the oxidation products formed. While it isknown that HOMs contribute to secondary organic aerosol (SOA) formation,including NPF, they have not been well studied in newly formed particles dueto their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures(−50 and −30 ∘C) and relativehumidities (20 % and 60 %) relevant in the upper free troposphere. Themeasurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD)chamber. The particle chemical composition was analyzed by a thermaldesorption differential mobility analyzer (TD-DMA) coupled to a nitratechemical ionization–atmospheric pressure interface–time-of-flight(CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Ourmeasurements revealed the presence of C8−10 monomers and C18−20dimers as the major compounds in the particles (diameter up to∼ 100 nm). Particularly, for the system with isoprene added,C5 (C5H10O5−7) and C15 compounds(C15H24O5−10) were detected. This observation is consistentwith the previously observed formation of such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate,our measurements indicate that they can still contribute to the particlegrowth at free tropospheric conditions. For the experiments reported here,most likely isoprene oxidation products enhance the growth of particleslarger than 15 nm. Additionally, we report on the nucleation rates measuredat 1.7 nm (J1.7 nm) and compared with previous studies, we found lowerJ1.7 nm values, very likely due to the higher α-pinene andozone mixing ratios used in the present study. 
    more » « less
  4. Laboratory chambers, invaluable in atmospheric chemistry and aerosol formation studies, are subject to particle and vapor wall deposition, processes that need to be accounted for in order to accurately determine secondary organic aerosol (SOA) mass yields. Although particle wall deposition is reasonably well understood and usually accounted for, vapor wall deposition is less so. The effects of vapor wall deposition on SOA mass yields in chamber experiments can be constrained experimentally by increasing the seed aerosol surface area to promote the preferential condensation of SOA-forming vapors onto seed aerosol. Here, we study the influence of seed aerosol surface area and oxidation rate on SOA formation in α-pinene ozonolysis. The observations are analyzed using a coupled vapor–particle dynamics model to interpret the roles of gas–particle partitioning (quasi-equilibrium vs. kinetically limited SOA growth) and α-pinene oxidation rate in influencing vapor wall deposition. We find that the SOA growth rate and mass yields are independent of seed surface area within the range of seed surface area concentrations used in this study. This behavior arises when the condensation of SOA-forming vapors is dominated by quasi-equilibrium growth. Faster α-pinene oxidation rates and higher SOA mass yields are observed at increasing O3 concentrations for the same initial α-pinene concentration. When the α-pinene oxidation rate increases relative to vapor wall deposition, rapidly produced SOA-forming oxidation products condense more readily onto seed aerosol particles, resulting in higher SOA mass yields. Our results indicate that the extent to which vapor wall deposition affects SOA mass yields depends on the particular volatility organic compound system and can be mitigated through the use of excess oxidant concentrations. 
    more » « less
  5. Abstract. This study presents a characterization of the hygroscopic growth behaviour and effects of different inorganic seed particles on the formation of secondary organic aerosols (SOAs) from the dark ozone-initiated oxidation of isoprene at low NOx conditions. We performed simulations of isoprene oxidation using a gas-phase chemical reaction mechanism based onthe Master Chemical Mechanism (MCM) in combination with an equilibriumgas–particle partitioning model to predict the SOA concentration. Theequilibrium model accounts for non-ideal mixing in liquid phases, includingliquid–liquid phase separation (LLPS), and is based on the AIOMFAC (Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients) model for mixture non-ideality and the EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature,Intramolecular, and Non-additivity effects) model for pure compound vapourpressures. Measurements from the Cosmics Leaving Outdoor Droplets (CLOUD)chamber experiments, conducted at the European Organization for NuclearResearch (CERN) for isoprene ozonolysis cases, were used to aid inparameterizing the SOA yields at different atmospherically relevanttemperatures, relative humidity (RH), and reacted isoprene concentrations. To represent the isoprene-ozonolysis-derived SOA, a selection of organicsurrogate species is introduced in the coupled modelling system. The modelpredicts a single, homogeneously mixed particle phase at all relativehumidity levels for SOA formation in the absence of any inorganic seedparticles. In the presence of aqueous sulfuric acid or ammonium bisulfateseed particles, the model predicts LLPS to occur below ∼ 80 % RH, where the particles consist of an inorganic-rich liquid phase andan organic-rich liquid phase; however, this includes significant amounts of bisulfate and water partitioned to the organic-rich phase. The measurements show an enhancement in the SOA amounts at 85 % RH, compared to 35 % RH, for both the seed-free and seeded cases. The model predictions of RH-dependent SOA yield enhancements at 85 % RH vs. 35 % RH are 1.80 for a seed-free case, 1.52 for the case with ammonium bisulfate seed, and 1.06 for the case with sulfuric acid seed. Predicted SOA yields are enhanced in the presence of an aqueous inorganic seed, regardless of the seed type (ammonium sulfate, ammonium bisulfate, or sulfuric acid) in comparison with seed-free conditions at the same RH level. We discuss the comparison of model-predicted SOA yields with a selection of other laboratory studies on isoprene SOA formation conducted at different temperatures and for a variety of reacted isoprene concentrations. Those studies were conducted at RH levels at or below 40 % with reported SOA mass yields ranging from 0.3 % up to 9.0 %, indicating considerable variations. A robust feature of our associated gas–particle partitioning calculations covering the whole RH range is the predicted enhancement of SOA yield at high RH (> 80 %) compared to low RH (dry) conditions, which is explained by the effect of particle water uptake and its impact on the equilibrium partitioning of all components. 
    more » « less