Anthropogenic climate change has increased the frequency of drought, wildfire, and invasions of non‐native species. Although high‐severity fires linked to drought can inhibit recovery of native vegetation in forested ecosystems, it remains unclear how drought impacts the recovery of other plant communities following wildfire. We leveraged an existing rainfall manipulation experiment to test the hypothesis that reduced precipitation, fuel load, and fire severity convert plant community composition from native shrubs to invasive grasses in a Southern California coastal sage scrub system. We measured community composition before and after the 2020 Silverado wildfire in plots with three rainfall treatments. Drought reduced fuel load and vegetation cover, which reduced fire severity. Native shrubs had greater prefire cover in added water plots compared to reduced water plots. Native cover was lower and invasive cover was higher in postfire reduced water plots compared to postfire added and ambient water plots. Our results demonstrate the importance of fuel load on fire severity and plant community composition on an ecosystem scale. Management should focus on reducing fire frequency and removing invasive species to maintain the resilience of coastal sage scrub communities facing drought. In these communities, controlled burns are not recommended as they promote invasive plants.
(a) How did seedling numbers and species composition change in the first year after a wildfire during drought, relative to pre‐fire variation? (b) Has the community returned to pre‐fire composition after five years? (c) Has the degree of dominance by exotic annual grasses changed? (d) Is there any evidence that drought conditions affected community cover, before or after fire?
Exotic‐dominated annual grassland in southern California, USA.
We monitored community cover and native annual forb densities for four years before and four (cover) to five (densities) years after an unintentional fire (fall 2013) coinciding with the spring 2012–2019 California drought. We also measured seedling emergence both before and during the first year post‐fire. We assessed post‐fire changes in cover and density relative to pre‐fire variation, and tested correlations between community cover and annual rainfall measures.
Seedling emergence declined strongly after fire for exotic grasses, but remained stable for exotic forbs. Seedling densities of the most common native forbs declined, but several previously‐rare natives increased. Community cover initially shifted towards the exotic forbs
Immediate post‐fire conditions favoured exotic and native forbs over grasses, as predicted. Yet in contrast to many previous studies, the community did not return quickly to pre‐fire composition but showed persistent changes that favoured neither natives nor exotics. Our results suggest post‐fire recovery in this habitat may be contingent on abiotic conditions, with drought one potential explanation for changes.
- PAR ID:
- 10458326
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Vegetation Science
- Volume:
- 31
- Issue:
- 2
- ISSN:
- 1100-9233
- Page Range / eLocation ID:
- p. 307-318
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The sagebrush biome covers much of the western United States yet is at risk from ongoing disturbances. Physical disturbances such as fire often overcome the resistance of sagebrush communities to biological disturbances such as invasion by non‐native species, but the impact of burn severity or combined disturbance types on sagebrush community composition remains unclear. We examined the relationship between native functional groups and non‐native annual grass cover to the number of fires, burn severity, anthropogenic development, and vegetation treatments in northern Nevada, USA. We used Bureau of Land Management vegetation monitoring plots and existing climate, fire, and vegetation treatment databases to explore relationships using beta regression. After accounting for mean annual precipitation and temperature, and elevation, we quantified functional group mean cover related to levels of burn severity, numbers of fires, development, and vegetation treatments. Native herbaceous (grass and forb) groups were resilient to fire, but fire caused large declines in shrub and sagebrush cover. Non‐native annual grass cover was associated with higher burn severity and the first fire at a site. We did not find evidence that post‐fire restoration treatments were associated with increased native cover or decreased non‐native cover. However, shrub control and soil disturbing treatments (discing and chaining) were associated with decreased native perennial grass cover and increased non‐native annual grass cover. Functional groups displayed varying patterns related to anthropogenic development and fire. For example, development had a larger impact on non‐native cover at lower levels of burn severity, whereas forbs increased following fire only at lower levels of development. Although in some cases sagebrush communities showed resilience to disturbance, our results showed resistance to invasion by non‐native annual grasses can be overcome by combinations of disturbances at lower levels or by severe events.
-
This study investigated the question, "Does climate change affect vegetation and seed bank composition in desert grasslands?" The work was done in the Sevilleta National Wildlife Refuge, New Mexico, USA, in in the Extreme Drought in Grassland Experiment (EDGE). Vegetation and seed bank species composition were recorded in black grama (Bouteloua eriopoda) and blue grama (B. gracilis) grasslands at Sevilleta. At each site, two rainfall manipulations and ambient controls were established in 2013 (n=10). Treatments included extreme drought (-66% rainfall reduction) and delayed monsoon (precipitation captured during July-August and reapplied during September-October). Aboveground species composition was assessed and composite soil samples were collected in 2017, five years after the experiment started. Seed bank composition was evaluated using the seedling emergence method. Rainfall treatments increased aboveground species richness at both sites, and seed bank richness only in the blue grama community. Vegetation cover was reduced by both rainfall manipulations, but seed bank density increased or remained the same compared with controls. In aboveground vegetation, cover of annual and perennial forbs increased, and dominant perennial grasses decreased. In the soil seed bank, species composition was similar among all treatments and was dominated by annual and perennial forbs. The seed bank was more resistant to drought than aboveground vegetation. Because seed banks enhance long-term community stability, their drought resistance plays an important role in maintaining ecosystem processes during and following drought in these grassland communities.more » « less
-
Abstract Extreme drought and increasing temperatures can decrease the resilience of plant communities to fires. Not only may extremely dry conditions during or after fires lead to higher plant mortality and poorer recruitment, but severe pre‐fire droughts may reduce the seed production and belowground vigor that are essential to post‐fire plant recovery, and may indirectly facilitate invasion. We studied survival, recruitment, and growth of shrubs and herbs in chaparral (shrubland) communities in Northern California after a 2015 fire that immediately followed California’s extreme 3‐yr drought. We followed the same protocols used to study similar, adjacent communities after a 1999 fire that did not follow a drought, and we compared the two recovery trajectories. Overall, the 2015 fire was not more severe than the 1999 fire, yet it caused higher mortality and lower growth of resprouting shrubs on fertile (sandstone) soils. In contrast, the 2015 fire did not affect the mortality or growth of resprouting shrubs on infertile (serpentine) soils, the density of shrub seedlings, or the richness or cover of native herbs differently than the 1999 fire. However, the 2015 fire facilitated a massive increase in exotic herbaceous cover, especially on fertile soils, possibly portending the early stages of a type conversion to exotic‐dominated grassland. Our findings indicate that the consequences of climate change on fire‐dependent communities will include effects of pre‐fire as well as post‐fire climate, and that resprouting shrubs are particularly likely to be sensitive to pre‐fire drought.
-
Abstract Aim Climate warming is increasing fire activity in many of Earth’s forested ecosystems. Because fire is a catalyst for change, investigation of post‐fire vegetation response is critical to understanding the potential for future conversions from forest to non‐forest vegetation types. We characterized the influences of climate and terrain on post‐fire tree regeneration and assessed how these biophysical factors might shape future vulnerability to wildfire‐driven forest conversion.
Location Montane forests, Rocky Mountains, USA.
Time period 1981–2099.
Taxa studied Pinus ponderosa ;Pseudotsuga menziesii .Methods We developed a database of dendrochronological samples (
n = 717) and plots (n = 1,301) in post‐fire environments spanning a range of topoclimatic settings. We then used statistical models to predict annual post‐fire seedling establishment suitability and total post‐fire seedling abundance from a suite of biophysical correlates. Finally, we reconstructed recent trends in post‐fire recovery and projected future dynamics using three general circulation models (GCMs) under moderate and extreme CO2emission scenarios.Results Though growing season (April–September) precipitation during the recent period (1981–2015) was positively associated with suitability for post‐fire tree seedling establishment, future (2021–2099) trends in precipitation were widely variable among GCMs, leading to mixed projections of future establishment suitability. In contrast, climatic water deficit (CWD), which is indicative of warm, dry conditions, was negatively associated with post‐fire seedling abundance during the recent period and was projected to increase throughout the southern Rocky Mountains in the future. Our findings suggest that future increases in CWD and an increased frequency of extreme drought years will substantially reduce post‐fire seedling densities.
Main conclusions This study highlights the key roles of warming and drying in declining forest resilience to wildfire. Moisture stress, driven by macroclimate and topographic setting, will interact with wildfire activity to shape future vegetation patterns throughout the southern Rocky Mountains, USA.