Abstract Drought is a major abiotic stress limiting agricultural productivity. Previous field-level experiments have demonstrated that drought decreases microbiome diversity in the root and rhizosphere. How these changes ultimately affect plant health remains elusive. Toward this end, we combined reductionist, transitional and ecological approaches, applied to the staple cereal crop sorghum to identify key root-associated microbes that robustly affect drought-stressed plant phenotypes. Fifty-three Arabidopsis-associated bacteria were applied to sorghum seeds and their effect on root growth was monitored. Two Arthrobacter strains caused root growth inhibition (RGI) in Arabidopsis and sorghum. In the context of synthetic communities, Variovorax strains were able to protect plants from Arthrobacter-caused RGI. As a transitional system, high-throughput phenotyping was used to test the synthetic communities. During drought stress, plants colonized by Arthrobacter had reduced growth and leaf water content. Plants colonized by both Arthrobacter and Variovorax performed as well or better than control plants. In parallel, we performed a field trial wherein sorghum was evaluated across drought conditions. By incorporating data on soil properties into the microbiome analysis, we accounted for experimental noise with a novel method and were able to observe the negative correlation between the abundance of Arthrobacter and plant growth. Having validated this approach, we cross-referenced datasets from the high-throughput phenotyping and field experiments and report a list of bacteria with high confidence that positively associated with plant growth under drought stress. In conclusion, a three-tiered experimental system successfully spanned the lab-to-field gap and identified beneficial and deleterious bacterial strains for sorghum under drought.
more »
« less
Phyllosphere Exudates Select for Distinct Microbiome Members in Sorghum Epicuticular Wax and Aerial Root Mucilage
Phyllosphere exudates create specialized microhabitats that shape microbial community diversity. We explored the microbiome associated with two sorghum phyllosphere exudates, the epicuticular wax and aerial root mucilage. We assessed the microbiome associated with the wax from sorghum plants over two growth stages, and the root mucilage additionally from nitrogen-fertilized and nonfertilized plants. In parallel, we isolated and characterized hundreds of bacteria from wax and mucilage, and integrated data from cultivation-independent and cultivation-dependent approaches to gain insights into exudate diversity and bacterial phenotypes. We found that Sphingomonadaceae and Rhizobiaceae families were the major taxa in the wax regardless of water availability and plant developmental stage to plants. The cultivation-independent mucilage-associated bacterial microbiome contained the families Erwiniaceae, Flavobacteriaceae, Rhizobiaceae, Pseudomonadaceae, and Sphingomonadaceae, and its structure was strongly influenced by sorghum development but only modestly influenced by fertilization. In contrast, the fungal community structure of mucilage was strongly affected by the year of sampling but not by fertilization or plant developmental stage, suggesting a decoupling of fungal–bacterial dynamics in the mucilage. Our bacterial isolate collection from wax and mucilage had several isolates that matched 100% to detected amplicon sequence variants, and were enriched on media that selected for phenotypes that included phosphate solubilization, putative diazotrophy, resistance to desiccation, capability to grow on methanol as a carbon source, and ability to grow in the presence of linalool and β-caryophyllene (terpenes in sorghum wax). This work expands our understanding of the microbiome of phyllosphere exudates and supports our long-term goal to translate microbiome research to support sorghum cultivation.
more »
« less
- PAR ID:
- 10458481
- Date Published:
- Journal Name:
- Phytobiomes Journal
- ISSN:
- 2471-2906
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Plant leaves harbor complex microbial communities that influence plant health and productivity. Nevertheless, a detailed understanding of phyllosphere community assembly and drivers is needed, particularly for phyllosphere fungi. Here, we investigated seasonal dynamics of epiphytic phyllosphere fungal communities in switchgrass (Panicum virgatum L.), a focal bioenergy crop. We also leverage previously published data on switchgrass phyllosphere bacterial communities from the same experimental plants, allowing us to compare fungal and bacterial dynamics and explore interdomain network associations in the switchgrass phyllosphere. Overall, we found a strong impact of sampling date on fungal community composition, with multiple taxonomic levels exhibiting clear temporal patterns in relative abundance. In addition, leaf nitrogen concentration, leaf dry matter content, plant height, and minimum daily air temperature explained significant variation in phyllosphere fungal communities, likely due to their correlation with sampling date. Finally, among the core taxa, fungi–bacteria network associations were much more common than bacteria–bacteria associations, suggesting the importance of interdomain phylogenetic diversity in microbiome assembly. Although our findings highlight the complexity of phyllosphere microbiome assembly, the clear temporal patterns in lineage-specific fungal abundances give promise to the potential for accurately predicting shifts in fungal phyllosphere communities throughout the growing season, a key research priority for sustainable agriculture. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
-
Campbell, Barbara J. (Ed.)ABSTRACT In nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return, plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast-growing copiotrophs, slow-growing oligotrophs) and plant (C 3 forb, C 4 grass) communities residing in a nutrient-poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized versus unfertilized) and plant association (bulk versus rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass versus forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease-suppressive bacterial taxa, and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilization serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling. IMPORTANCE Over the last century, humans have substantially altered nitrogen and phosphorus cycling. Use of synthetic fertilizer and burning of fossil fuels and biomass have increased nitrogen and phosphorus deposition, which results in unintended fertilization of historically low-nutrient ecosystems. With increased nutrient availability, plant biodiversity is expected to decline, and the abundance of copiotrophic taxa is anticipated to increase in bacterial communities. Here, we address how bacterial communities associated with different plant functional types (forb, grass) shift due to long-term nutrient enrichment. Unlike other studies, results revealed an increase in bacterial diversity, particularly of oligotrophic bacteria in fertilized plots. We observed that nutrient addition strongly determines forb and grass rhizosphere composition, which could indicate different metabolic preferences in the bacterial communities. This study highlights how long-term fertilization of oligotroph-dominated wetlands could alter diversity and metabolism of rhizosphere bacterial communities in unexpected ways.more » « less
-
null (Ed.)Microbial communities help plants access nutrients and tolerate stress. Some microbiomes are specific to plant genotypes and, therefore, may contribute to intraspecific differences in plant growth and be a promising target for plant breeding. Switchgrass (Panicum virgatum) is a potential bioenergy crop with broad variation in yields and environmental responses; recent studies suggest that associations with distinct microbiomes may contribute to variation in cultivar yields. We used a common garden experiment to investigate variation in 12 mature switchgrass cultivar soil microbiomes and, furthermore, to examine how root traits and soil conditions influence microbiome structure. We found that average root diameter varied up to 33% among cultivars and that the cultivars also associated with distinct soil microbiomes. Cultivar had a larger effect on the soil bacterial than fungal community but both were strongly influenced by soil properties. Root traits had a weaker effect on microbiome structure but root length contributed to variation in the fungal community. Unlike the soil communities, the root bacterial communities did not group by cultivar, based on a subset of samples. Microbial biomass carbon and nitrogen and the abundance of several dominant bacterial phyla varied between ecotypes but overall the differences in soil microbiomes were greater among cultivars than between ecotypes. Our findings show that there is not one soil microbiome that applies to all switchgrass cultivars, or even to each ecotype. These subtle but significant differences in root traits, microbial biomass, and the abundance of certain soil bacteria could explain differences in cultivar yields and environmental responses.more » « less
-
Abstract Bacterial and fungal root endophytes can impact the fitness of their host plants, but the relative importance of drivers for root endophyte communities is not well known. Host plant species, the composition and density of the surrounding plants, space, and abiotic drivers could significantly affect bacterial and fungal root endophyte communities. We investigated their influence in endophyte communities of alpine plants across a harsh high mountain landscape using high-throughput sequencing. There was less compositional overlap between fungal than bacterial root endophyte communities, with four ‘cosmopolitan’ bacterial OTUs found in every root sampled, but no fungal OTUs found across all samples. We found that host plant species, which included nine species from three families, explained the greatest variation in root endophyte composition for both bacterial and fungal communities. We detected similar levels of variation explained by plant neighborhood, space, and abiotic drivers on both communities, but the plant neighborhood explained less variation in fungal endophytes than expected. Overall, these findings suggest a more cosmopolitan distribution of bacterial OTUs compared to fungal OTUs, a structuring role of the plant host species for both communities, and largely similar effects of the plant neighborhood, abiotic drivers, and space on both communities.more » « less
An official website of the United States government

