skip to main content


This content will become publicly available on July 9, 2024

Title: A Self-contained Approach to MEMS MARG Orientation Estimation for Hand Gesture Tracking in Magnetically Distorted Environments
There is increasing interest in using low-cost and lightweight Micro Electro-Mechanical System (MEMS) modules containing tri-axial accelerometers, gyroscopes and magnetometers for tracking the motion of segments of the human body. We are specifically interested in using these devices, called “Magnetic, Angular-Rate and Gravity” (“MARG”) modules, to develop an instrumented glove, assigning one of these MARG modules to monitor the (absolute) 3-D orientation of each of the proximal and middle phalanges of the fingers of a computer user. This would provide real-time monitoring of the hand gestures of the user, enabling non-vision gesture recognition approaches that do not degrade with lineof- sight disruptions or longer distance from the cameras. However, orientation estimation from low-cost MEMS MARG modules has shown to degrade in areas where the geomagnetic field is distorted by the presence of ferromagnetic objects (which are common in contemporary environments). This paper describes the continued evolution of our algorithm to obtain robust MARG orientation estimates, even in magnetically distorted environments. In particular, the paper describes a new self-contained version of the algorithm, i.e., one requiring no information from external devices, in contrast to the previous versions. Keywords: MARG module · Orientation Estimation · Magnetic Disturbance  more » « less
Award ID(s):
1920182 1532061
NSF-PAR ID:
10458503
Author(s) / Creator(s):
Editor(s):
M. Kurosu and A. Hashizume
Date Published:
Journal Name:
HCII 2023, LNCS 14011
Page Range / eLocation ID:
585–602
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present the FIU MARG Dataset (FIUMARGDB) of signals from the tri-axial accelerometer, gyroscope, and magnetometer contained in a low-cost miniature magnetic–angular rate–gravity (MARG) sensor module (also known as magnetic inertial measurement unit, MIMU) for the evaluation of MARG orientation estimation algorithms. The dataset contains 30 files resulting from different volunteer subjects executing manipulations of the MARG in areas with and without magnetic distortion. Each file also contains reference (“ground truth”) MARG orientations (as quaternions) determined by an optical motion capture system during the recording of the MARG signals. The creation of FIUMARGDB responds to the increasing need for the objective comparison of the performance of MARG orientation estimation algorithms, using the same inputs (accelerometer, gyroscope, and magnetometer signals) recorded under varied circumstances, as MARG modules hold great promise for human motion tracking applications. This dataset specifically addresses the need to study and manage the degradation of orientation estimates that occur when MARGs operate in regions with known magnetic field distortions. To our knowledge, no other dataset with these characteristics is currently available. FIUMARGDB can be accessed through the URL indicated in the conclusions section. It is our hope that the availability of this dataset will lead to the development of orientation estimation algorithms that are more resilient to magnetic distortions, for the benefit of fields as diverse as human–computer interaction, kinesiology, motor rehabilitation, etc. 
    more » « less
  2. Masaaki Kurosu (Ed.)
    A new approach to correct the orientation estimate for a miniature Magnetic-Angular Rate-Gravity (MARG) module is statistically evaluated in a hand motion tracking system. Thirty human subjects performed an experiment to validate the performance of the proposed orientation correction algorithm in both non-magnetically distorted (MN) and magnetically distorted (MD) areas. The Kruskal-Wallis tests show that the orientation correction algorithm using Gravity and Magnetic Vectors with Double SLERP (GMV-D), the correction using Gravity and Magnetic Vectors with Single SLERP (GMV-S) and the on-board Kalman-Filter (KF) performed similarly in non-magnetically distorted areas. However, the statistical tests show that, when operating in the magnetically distorted region, the level of error in the orientation estimates produced by the three methods is significantly different, with the proposed GMV-D method yielding lower levels of error in the three Euler Angles Phi, Theta and Psi. This indicates that the GMV-D method was better able to provide orientation estimates that are more robust against local disturbances of the magnetic field that might exist in the operating space of the MARG module. 
    more » « less
  3. This article reports an adaptive sensor bias observer and attitude observer operating directly on [Formula: see text] for true-north gyrocompass systems that utilize six-degree-of-freedom inertial measurement units (IMUs) with three-axis accelerometers and three-axis angular rate gyroscopes (without magnetometers). Most present-day low-cost robotic vehicles employ attitude estimation systems that employ microelectromechanical system (MEMS) magnetometers, angular rate gyros, and accelerometers to estimate magnetic attitude (roll, pitch, and magnetic heading) with limited heading accuracy. Present-day MEMS gyros are not sensitive enough to dynamically detect the Earth’s rotation, and thus cannot be used to estimate true-north geodetic heading. Relying on magnetic compasses can be problematic for vehicles that operate in environments with magnetic anomalies and those requiring high-accuracy navigation as the limited accuracy ([Formula: see text] error) of magnetic compasses is typically the largest error source in underwater vehicle navigation systems. Moreover, magnetic compasses need to undergo time-consuming recalibration for hard-iron and soft-iron errors every time a vehicle is reconfigured with a new instrument or other payload, as very frequently occurs on oceanographic marine vehicles. In contrast, the gyrocompass system reported herein utilizes fiber optic gyroscope (FOG) IMU angular rate gyro and MEMS accelerometer measurements (without magnetometers) to dynamically estimate the instrument’s time-varying true-north attitude (roll, pitch, and geodetic heading) in real-time while the instrument is subject to a priori unknown rotations. This gyrocompass system is immune to magnetic anomalies and does not require recalibration every time a new payload is added to or removed from the vehicle. Stability proofs for the reported bias and attitude observers, preliminary simulations, and a full-scale vehicle trial are reported that suggest the viability of the true-north gyrocompass system to provide dynamic real-time true-north heading, pitch, and roll utilizing a comparatively low-cost FOG IMU. 
    more » « less
  4. This paper presents a mobile-based solution that integrates 3D vision and voice interaction to assist people who are blind or have low vision to explore and interact with their surroundings. The key components of the system are the two 3D vision modules: the 3D object detection module integrates a deep-learning based 2D object detector with ARKit-based point cloud generation, and an interest direction recognition module integrates hand/finger recognition and ARKit-based 3D direction estimation. The integrated system consists of a voice interface, a task scheduler, and an instruction generator. The voice interface contains a customized user request mapping module that maps the user’s input voice into one of the four primary system operation modes (exploration, search, navigation, and settings adjustment). The task scheduler coordinates with two web services that host the two vision modules to allocate resources for computation based on the user request and network connectivity strength. Finally, the instruction generator computes the corresponding instructions based on the user request and results from the two vision modules. The system is capable of running in real time on mobile devices. We have shown preliminary experimental results on the performance of the voice to user request mapping module and the two vision modules. 
    more » « less
  5. Fabrics and fibrous materials offer a soft, porous, and flexible substrate for microelectromechanical systems (MEMS) packaging in breathable, wearable formats that allow airflow. Device-on-fiber systems require developments in the field of E-Textiles including smart fibers, functional fiber intersections, textile circuit routing, and alignment methods that adapt to irregular materials. In this paper, we demonstrate a MEMS-on-fabric layout workflow that obtains fiber intersection locations from high-resolution fabric images. We implement an image processing algorithm to drive the MEMS layout software, creating an individualized MEMS “gripper” layout designed to grasp fibers on a specific fabric substrate during a wafer-to-fabric parallel transfer step. The efficiency of the algorithm in terms of a number of intersections identified on the complete image is analyzed. The specifications of the MEMS layout design such as the length of the MEMS gripper, spatial distribution, and orientation are derivable from the MATLAB routine implemented on the image. Furthermore, the alignment procedure, tolerance, and hardware setup for the alignment method of the framed sample fabric to the wafer processed using the custom gripper layout are discussed along with the challenges of the release of MEMS devices from the Si substrate to the fabric substrate. 
    more » « less