skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Dual‐functional, aromatic, epoxy‐methacrylate monomers from bio‐based feedstocks and their respective epoxy‐functional thermoplastics
ABSTRACT

Dual‐functional monomers consist of two distinctly different functional groups that enable chemical versatility. The most readily available epoxy‐methacrylate dual‐functional monomer is glycidyl methacrylate (GMA). In an effort to produce bio‐based, aromatic complements to GMA, asymmetric phenolic diols (vanillyl alcohol, syringyl alcohol, gastrodigenin, and tyrosol) were identified and selectively epoxidized at the aromatic hydroxyl followed by subsequent esterification at the aliphatic hydroxyl to prepare dual functional monomers, vanillyl alcohol epoxy‐methacrylate (VAEM), syringyl alcohol epoxy‐methacrylate (SAEM), gastrodigenin epoxy‐methacrylate (GDEM), and tyrosol epoxy‐methacrylate (TEM). These monomers are viable platforms for a multitude of applications due to their unique chemical functionalities. VAEM, SAEM, GDEM, and TEM were homopolymerized individually to produce aromatic, bio‐based epoxy‐functional thermoplastics analogous to poly(GMA). The molecular weight distributions and thermal properties of each polymer were evaluated, as were the surface characteristics of flow‐coated thin films from these polymers. Most of the newly prepared epoxy‐functional thermoplastics exhibited increased thermal stability (initial decomposition temperatures >260 °C in air) relative to poly(GMA), while retaining similar glass transition temperatures (~ 65 °C) and surface energies (~ 53 mJ m−2); thus, these materials could be substituted for poly(GMA) and enable use in higher‐temperature applications. © 2020 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 673–682

 
more » « less
PAR ID:
10458511
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
58
Issue:
5
ISSN:
2642-4150
Page Range / eLocation ID:
p. 673-682
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    New methacrylate monomers with carbazole moieties as pendant groups were synthesized by multistep syntheses starting from carbazoles with biphenyl substituents in the aromatic ring. The corresponding polymers were prepared using a free‐radical polymerization. The novel polymers containN‐alkylated carbazoles mono‐ or bi‐substituted with biphenyl groups in the aromatic ring.N‐alkyl chains in polymers vary by length and structure. All new polymers were synthesized to evaluate the structural changes in terms of their effect on the energy profile, thermal, dielectric, and photophysical properties when compared to the parent polymer poly(2‐(9H‐carbazol‐9‐yl)ethyl methacrylate). According to the obtained results, these compounds may be well suited for memory resistor devices. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019, 57, 70–76

     
    more » « less
  2. Abstract

    Polymerization‐induced self‐assembly (PISA) and in situ crosslinking of the formed nanoparticles are successfully realized by activators regenerated by electron‐transfer atom transfer radical polymerization (ARGET ATRP) of glycidyl methacrylate (GMA) or a mixture of GMA/benzyl methacrylate (BnMA) monomers in ethanol. Poly(oligo(ethylene oxide) methyl ether methacrylate) was employed as macroinitiator/stabilizer, and a cupric bromide/tris(pyridin‐2‐ylmethyl)amine complex as catalyst. Tin (2‐ethylhexanoate) was used as reducing agent for ARGET ATRP, and simultaneously acted as a catalyst for ring‐opening polymerization of oxirane ring in GMA. The kinetics shows that the double bond in GMA was completely polymerized in 4.0 h, while only a 33% conversion of oxirane ring in GMA was reached at 117.0 h. Such a large difference would guarantee a smooth PISA and a subsequent in situ crosslinking of formed nanoparticles. The transmission electron microscopy and dynamic light scattering show spherical nanoparticles formed. With a feed molar ratio [BnMA]0/[GMA]0= 150/50, 100/100, and 50/150, the nanoparticles formed in ethanol can dissociate or swell in toluene. When pure GMA was used, the solid nanoparticles were observed in toluene or ethanol. The ARGET ATRP provides an efficient strategy to stabilize the nanoparticles formed in the PISA of GMA‐containing system.

     
    more » « less
  3. Abstract

    Vat photopolymerization (VPP) of highly aromatic polyurethanes (PUs) expands the library of additive manufacturing (AM) materials and enables a vast array of ductile thermoplastics, rigid and flexible thermosets, and elastomers. Aromatic diisocyanates and various diols enable printing of rigid, highly aromatic cross‐linked parts, which offer high glass transition temperatures and tunable thermomechanical performance. The judicious control of molecular weight of the photo‐reactive telechelic oligomers allows for a fundamental study of the influence of cross‐link density in highly aromatic 3D PU printed objects. VPP AM produces objects with high resolution, smooth surface finish, and isotropic mechanical properties. Thermal post‐processing is critical in maintaining excellent thermomechanical properties with semi‐crystallinity as a function of cross‐link density. Due to the presence of two ester carbonyls in the bis(2‐hydroxyethyl) terephthalate chain extender, the printed parts are readily amenable to depolymerization with methanolysis to produce difunctional dimethyl dicarbamates under modest reaction conditions. Dimethyl dicarbamates serve as suitable monomers for subsequent polycondensation.

     
    more » « less
  4. The synthesis of polymers from lignin-derivable compounds can replace petrochemical building blocks with a renewable feedstock. However, the end-of-life management of bioderivable, nonbiodegradable polymers remains an outstanding challenge. Herein, the chemical recycling and upcycling of two higher-glass-transition temperature (>100 °C), lignin-derivable polymethacrylates, poly(syringyl methacrylate) (PSM) and poly(guaiacyl methacrylate) (PGM), is reported. Neat PSM and PGM were thermally depolymerized to quantitative conversions, producing their constituent monomers at high yields and purity. The deconstruction atmosphere influenced the depolymerization reaction order, and depolymerization was thermodynamically favored in air over N2. Further, monomer bulkiness and volatility impacted depolymerization activation energies. Notably, bulk depolymerization of PSM and PGM was performed without solvent or catalyst to high polymer conversions (89–90 wt %) and monomer yields (86–90 mol %) without byproduct formation. The resultant monomers were then upcycled to narrow-dispersity polymers and phase-separated block polymers. The findings herein offer a pathway to material circularity for higher-performance, lignin-derivable polymethacrylates. 
    more » « less
  5. Epoxy-based polymer networks from step-growth polymerizations are ubiquitous in coatings, adhesives, and as matrices in composite materials. Dynamic covalent bonds in the network allow its degradation into small molecules and thus, enable chemical recycling; however, such degradation often requires elevated temperatures and costly chemicals, resulting in various small molecules. Here, we design crosslinked polyesters from structurally similar epoxy and anhydride monomers derived from phthalic acid. We achieve selective degradation of the polyesters through transesterification reactions at near-ambient conditions using an alkali carbonate catalyst, resulting in a singular phthalic ester. We also demonstrate upcycling the network polyesters to photopolymers by one-step depolymerization using a functional alcohol. 
    more » « less