skip to main content


Title: The untapped potential of reptile biodiversity for understanding how and why animals age
Abstract

The field of comparative ageing biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analysed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of ageing.

We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of ageing in reptiles consistent with canonical hallmarks of ageing in model systems? What are the knowledge gaps in our understanding of reptile ageing?

We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower ageing than other orders, but data on crocodilians and tuatara are sparse. Sex‐specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals.

Reptiles share many physiological and molecular pathways of ageing with mammals, birds and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical ageing phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signalling, and DNA repair.

To overcome challenges to the study of reptile ageing, we recommend extending and expanding long‐term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life‐history axes and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all ageing biology.

A freePlain Language Summarycan be found within the Supporting Information of this article.

 
more » « less
NSF-PAR ID:
10458552
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
34
Issue:
1
ISSN:
0269-8463
Page Range / eLocation ID:
p. 38-54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Under life‐history theories of ageing, increased senescence should follow relatively high reproductive effort. This expectation has rarely been tested against senescence varying between and within the two sexes, although such an approach may clarify the origins of sex‐specific ageing in the context of a given mating system.

    Nazca boobies (Sula granti; a seabird) practise serial monogamy and biparental care. A male‐biased population sex ratio results in earlier and more frequent breeding by females. Based on sex‐specific reproductive schedules, females were expected to show faster age‐related decline for survival and reproduction. Within each sex, high reproductive effort in early life was expected to reduce late‐life performance and accelerate senescence.

    Longitudinal data were used to (a) evaluate the sex specificity of reproductive and actuarial senescence and then (b) test for early‐/late‐life fitness trade‐offs within each sex. Within‐sex analyses inform an interpretation of sex differences in senescence based on costs of reproduction. Analyses incorporated individual heterogeneity in breeding performance and cohort‐level differences in early‐adult environments.

    Females showed marginally more intense actuarial senescence and stronger age‐related declines for fledging success. The opposite pattern (earlier and faster male senescence) was found for breeding probability. Individual reproductive effort in early life positively predicted late‐life reproductive performance in both sexes and thus did not support a causal link between early‐reproduction/late‐life fitness trade‐offs and sex differences in ageing. A high‐quality diet in early adulthood reduced late‐life survival (females) and accelerated senescence for fledging success (males).

    This study documents clear variation in ageing patterns—by sex, early‐adult environment and early‐adult reproductive effort—with implications for the role mating systems and early‐life environments play in determining ageing patterns. Absent evidence for a disposable soma mechanism, patterns of sex differences in senescence may result from age‐ and condition‐dependent mate choice interacting with this population's male‐biased sex ratio and mate rotation.

     
    more » « less
  2. Abstract

    Actuarial senescence (called ‘senescence’ hereafter) often shows broad variation at the intraspecific level. Phenotypic plasticity likely plays a central role in among‐individual heterogeneity in senescence rate (i.e. the rate of increase in mortality with age), although our knowledge on this subject is still very fragmentary. Polyphenism—the unique sub‐type of phenotypic plasticity where several discrete phenotypes are produced by the same genotype—may provide excellent study systems to investigate if and how plasticity affects the rate of senescence in nature.

    In this study, we investigated whether facultative paedomorphosis influences the rate of senescence in a salamander,Ambystoma mavortium nebulosum. Facultative paedomorphosis, a unique form of polyphenism found in dozens of urodele species worldwide, leads to the production of two discrete, environmentally induced phenotypes: metamorphic and paedomorphic individuals. We leveraged an extensive set of capture–recapture data (8948 individuals, 24 years of monitoring) that were analysed using multistate capture–recapture models and Bayesian age‐dependent survival models.

    Multistate models revealed that paedomorphosis was the most common developmental pathway used by salamanders in our study system. Bayesian age‐dependent survival models then showed that paedomorphs have accelerated senescence in both sexes and shorter adult lifespan (in females only) compared to metamorphs. In paedomorphs, senescence rate and adult lifespan also varied among ponds and individuals. Females with good body condition and high lifetime reproductive success had slower senescence and longer lifespan. Late‐breeding females also lived longer but showed a senescence rate similar to that of early‐breeding females. Moreover, males with good condition had longer lifespan than males with poor body condition, although they had similar senescence rates. In addition, late‐breeding males lived longer but, unexpectedly, had higher senescence than early‐breeding males.

    Overall, our work provides one of the few empirical cases suggesting that environmentally cued polyphenism could affect the senescence of a vertebrate in nature, thus providing insights on the ecological and evolutionary consequences of developmental plasticity on ageing.

     
    more » « less
  3. Abstract

    The strategies by which animals allocate reproductive effort across their lifetimes vary, and the causes of variation in those strategies are actively debated. In birds, most research has focused heavily on variation in clutch size and fecundity, but incubation behaviour and other functionally related traits have received less attention. Variation in incubation period duration is notable because time‐dependent sources of clutch mortality should impose strong directional selection to minimize the incubation period. However, life‐history theory predicts multiple mechanisms by which inter‐ and intraspecific variation in incubation behaviours may be adaptive.

    We conducted one of the first studies of intraspecific latitudinal variation in avian incubation behaviours across a large portion of a single species’ range. We placed motion‐activated nest cameras inside burrowing owl nests at five study sites to quantify variation in daily nest attentiveness, cumulative nest attendance and incubation period duration. We tested predictions of two alterative hypotheses that have been proposed to explain variation in incubation periods: theparental risk tolerance hypothesisand theneonate quality hypothesis.

    Daily nest attentiveness, cumulative nest attendance and incubation period duration in burrowing owls were all positively correlated with latitude. Burrowing owls reduced their daily nest attentiveness at low latitudes and on days when the average nest temperature was within the range that is optimal for embryo development. Further, longer incubation periods were most strongly associated with greater cumulative nest attendance instead of reduced daily nest attentiveness.

    These results support predictions of theneonate quality hypothesis:longer incubation periods result from stronger selection on neonate quality rather than selection to reduce reproductive effort in response to low extrinsic mortality risk. However, some owls facultatively reduced their daily nest attentiveness, and this result supports the general hypothesis that incubation decisions reflect a trade‐off between reproduction and self‐maintenance, and that the optimal solution to that trade‐off varies systematically in response to latitudinal gradients in adult mortality.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. Abstract

    Stage‐based demographic methods, such as matrix population models (MPMs), are powerful tools used to address a broad range of fundamental questions in ecology, evolutionary biology and conservation science. Accordingly, MPMs now exist for over 3000 species worldwide. These data are being digitised as an ongoing process and periodically released into two large open‐access online repositories: the COMPADRE Plant Matrix Database and the COMADRE Animal Matrix Database. During the last decade, data archiving and curation of COMPADRE and COMADRE, and subsequent comparative research, have revealed pronounced variation in how MPMs are parameterized and reported.

    Here, we summarise current issues related to the parameterisation and reporting of MPMs that arise most frequently and outline how they affect MPM construction, analysis, and interpretation. To quantify variation in how MPMs are reported, we present results from a survey identifying key aspects of MPMs that are frequently unreported in manuscripts. We then screen COMPADRE and COMADRE to quantify how often key pieces of information are omitted from manuscripts using MPMs.

    Over 80% of surveyed researchers (n = 60) state a clear benefit to adopting more standardised methodologies for reporting MPMs. Furthermore, over 85% of the 300 MPMs assessed from COMPADRE and COMADRE omitted one or more elements that are key to their accurate interpretation. Based on these insights, we identify fundamental issues that can arise from MPM construction and communication and provide suggestions to improve clarity, reproducibility and future research utilising MPMs and their required metadata. To fortify reproducibility and empower researchers to take full advantage of their demographic data, we introduce a standardised protocol to present MPMs in publications. This standard is linked towww.compadre‐db.org, so that authors wishing to archive their MPMs can do so prior to submission of publications, following examples from other open‐access repositories such as DRYAD, Figshare and Zenodo.

    Combining and standardising MPMs parameterized from populations around the globe and across the tree of life opens up powerful research opportunities in evolutionary biology, ecology and conservation research. However, this potential can only be fully realised by adopting standardised methods to ensure reproducibility.

     
    more » « less
  5. BACKGROUND The Republic of Madagascar is home to a unique assemblage of taxa and a diverse set of ecosystems. These high levels of diversity have arisen over millions of years through complex processes of speciation and extinction. Understanding this extraordinary diversity is crucial for highlighting its global importance and guiding urgent conservation efforts. However, despite the detailed knowledge that exists on some taxonomic groups, there are large knowledge gaps that remain to be filled. ADVANCES Our comprehensive analysis of major taxonomic groups in Madagascar summarizes information on the origin and evolution of terrestrial and freshwater biota, current species richness and endemism, and the utilization of this biodiversity by humans. The depth and breadth of Madagascar’s biodiversity—the product of millions of years of evolution in relative isolation —is still being uncovered. We report a recent acceleration in the scientific description of species but many remain relatively unknown, particularly fungi and most invertebrates. DIGITIZATION Digitization efforts are already increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge in Madagascar. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. Among the new data presented, our update on plant numbers estimates 11,516 described vascular plant species native to Madagascar, of which 82% are endemic, in addition to 1215 bryophyte species, of which 28% are endemic. Humid forests are highlighted as centers of diversity because of their role as refugia and centers of recent and rapid radiations, but the distinct endemism of other areas such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest is also important despite lower species richness. Endemism in Malagasy fungi remains poorly known given the lack of data on the total diversity and global distribution of species. However, our analysis has shown that ~75% of the fungal species detected by environmental sequencing have not been reported as occurring outside of Madagascar. Among the 1314 species of native terrestrial and freshwater vertebrates, levels of endemism are extremely high (90% overall)—all native nonflying terrestrial mammals and native amphibians are found nowhere else on Earth; further, 56% of the island’s birds, 81% of freshwater fishes, 95% of mammals, and 98% of reptile species are endemic. Little is known about endemism in insects, but data from the few well-studied groups on the island suggest that it is similarly high. The uses of Malagasy species are many, with much potential for the uncovering of useful traits for food, medicine, and climate mitigation. OUTLOOK Considerable work remains to be done to fully characterize Madagascar’s biodiversity and evolutionary history. The multitudes of known and potential uses of Malagasy species reported here, in conjunction with the inherent value of this unique and biodiverse region, reinforce the importance of conserving this unique biota in the face of major threats such as habitat loss and overexploitation. The gathering and analysis of data on Madagascar’s remarkable biota must continue and accelerate if we are to safeguard this unique and highly threatened subset of Earth’s biodiversity. Emergence and composition of Madagascar’s extraordinary biodiversity. Madagascar’s biota is the result of over 160 million years of evolution, mostly in geographic isolation, combined with sporadic long distance immigration events and local extinctions. (Left) We show the age of the oldest endemic Malagasy clade for major groups (from bottom to top): arthropods, bony fishes, reptiles, flatworms, birds, amphibians, flowering plants, mammals, non-flowering vascular plants, and mollusks). Humans arrived recently, some 10,000 to 2000 years (top right) and have directly or indirectly caused multiple extinctions (including hippopotamus, elephant birds, giant tortoises, and giant lemurs) and introduced many new species (such as dogs, zebu, rats, African bushpigs, goats, sheep, rice). Endemism is extremely high and unevenly distributed across the island (the heat map depicts Malagasy palm diversity, a group characteristic of the diverse humid forest). Human use of biodiversity is widespread, including 1916 plant species with reported uses. The scientific description of Malagasy biodiversity has accelerated greatly in recent years (bottom right), yet the diversity and evolution of many groups remain practically unknown, and many discoveries await. 
    more » « less