skip to main content


Title: Human Tumor‐Lymphatic Microfluidic Model Reveals Differential Conditioning of Lymphatic Vessels by Breast Cancer Cells
Abstract

Breast tumor progression is a complex process involving intricate crosstalk between the primary tumor and its microenvironment. In the context of breast tumor‐lymphatic interactions, it is unclear how breast cancer cells alter the gene expression of lymphatic endothelial cells and how these transcriptional changes potentiate lymphatic dysfunction. Thus, there is a need for in vitro lymphatic vessel models to study these interactions. In this work, a tumor‐lymphatic microfluidic model is developed to study the differential conditioning of lymphatic vessels by estrogen receptor‐positive (i.e., MCF7) and triple‐negative (i.e., MDA‐MB‐231) breast cancer cells. The model consists of a lymphatic endothelial vessel cultured adjacently to either MCF7 or MDA‐MB‐231 cells. Quantitative transcriptional analysis reveals expression changes in genes related to vessel growth, permeability, metabolism, hypoxia, and apoptosis in lymphatic endothelial cells cocultured with breast cancer cells. Interestingly, these changes are different in the MCF7‐lymphatic cocultures as compared to the 231‐lymphatic cocultures. Importantly, these changes in gene expression correlate to functional responses, such as endothelial barrier dysfunction. These results collectively demonstrate the utility of this model for studying breast tumor‐lymphatic crosstalk for multiple breast cancer subtypes.

 
more » « less
PAR ID:
10458556
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
9
Issue:
3
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Breast cancer metastasis occurs via blood and lymphatic vessels. Breast cancer cells ‘educate’ lymphatic endothelial cells (LECs) to support tumor vascularization and growth. However, despite known metabolic alterations in breast cancer, it remains unclear how lymphatic endothelial cell metabolism is altered in the tumor microenvironment and its effect in lymphangiogenic signaling in LECs. We analyzed metabolites inside LECs in co-culture with MCF-7, MDA-MB-231, and SK-BR-3 breast cancer cell lines using $$^1\hbox {H}$$ 1 H nuclear magnetic resonance (NMR) metabolomics, Seahorse, and the spatial distribution of metabolic co-enzymes using optical redox ratio imaging to describe breast cancer-LEC metabolic crosstalk. LECs co-cultured with breast cancer cells exhibited cell-line dependent altered metabolic profiles, including significant changes in lactate concentration in breast cancer co-culture. Cell metabolic phenotype analysis using Seahorse showed LECs in co-culture exhibited reduced mitochondrial respiration, increased reliance on glycolysis and reduced metabolic flexibility. Optical redox ratio measurements revealed reduced NAD(P)H levels in LECs potentially due to increased NAD(P)H utilization to maintain redox homeostasis. $$^{13}\hbox {C}$$ 13 C -labeled glucose experiments did not reveal lactate shuttling into LECs from breast cancer cells, yet showed other $$^{13}\hbox {C}$$ 13 C signals in LECs suggesting internalized metabolites and metabolic exchange between the two cell types. We also determined that breast cancer co-culture stimulated lymphangiogenic signaling in LECs, yet activation was not stimulated by lactate alone. Increased lymphangiogenic signaling suggests paracrine signaling between LECs and breast cancer cells which could have a pro-metastatic role. 
    more » « less
  2. Abstract

    Metastatic breast cancer is one of the deadliest forms of malignancy, primarily driven by its characteristic micro‐environment comprising cancer cells interacting with stromal components. These interactions induce genetic and metabolic alterations creating a conducive environment for tumor growth. In this study, a physiologically relevant 3D vascularized breast cancer micro‐environment is developed comprising of metastatic MDA‐MB‐231 cells and human umbilical vein endothelial cells loaded in human dermal fibroblasts laden fibrin, representing the tumor stroma. The matrix, as well as stromal cell density, impacts the transcriptional profile of genes involved in tumor angiogenesis and cancer invasion, which are hallmarks of cancer. Cancer‐specific canonical pathways and activated upstream regulators are also identified by the differential gene expression signatures of these composite cultures. Additionally, a tumor‐associated vascular bed of capillaries is established exhibiting dilated vessel diameters, representative of in vivo tumor physiology. Further, employing aspiration‐assisted bioprinting, cancer–endothelial crosstalk, in the form of collective angiogenesis of tumor spheroids bioprinted at close proximity, is identified. Overall, this bottom–up approach of tumor micro‐environment fabrication provides an insight into the potential of in vitro tumor models and enables the identification of novel therapeutic targets as a preclinical drug screening platform.

     
    more » « less
  3. Xu, Jinbo (Ed.)
    Abstract Motivation Motions of transmembrane receptors on cancer cell surfaces can reveal biophysical features of the cancer cells, thus providing a method for characterizing cancer cell phenotypes. While conventional analysis of receptor motions in the cell membrane mostly relies on the mean-squared displacement plots, much information is lost when producing these plots from the trajectories. Here we employ deep learning to classify breast cancer cell types based on the trajectories of epidermal growth factor receptor (EGFR). Our model is an artificial neural network trained on the EGFR motions acquired from six breast cancer cell lines of varying invasiveness and receptor status: MCF7 (hormone receptor positive), BT474 (HER2-positive), SKBR3 (HER2-positive), MDA-MB-468 (triple negative, TN), MDA-MB-231 (TN) and BT549 (TN). Results The model successfully classified the trajectories within individual cell lines with 83% accuracy and predicted receptor status with 85% accuracy. To further validate the method, epithelial–mesenchymal transition (EMT) was induced in benign MCF10A cells, noninvasive MCF7 cancer cells and highly invasive MDA-MB-231 cancer cells, and EGFR trajectories from these cells were tested. As expected, after EMT induction, both MCF10A and MCF7 cells showed higher rates of classification as TN cells, but not the MDA-MB-231 cells. Whereas deep learning-based cancer cell classifications are primarily based on the optical transmission images of cell morphology and the fluorescence images of cell organelles or cytoskeletal structures, here we demonstrated an alternative way to classify cancer cells using a dynamic, biophysical feature that is readily accessible. Availability and implementation A python implementation of deep learning-based classification can be found at https://github.com/soonwoohong/Deep-learning-for-EGFR-trajectory-classification. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. Abstract During the migration of cancer cells for metastasis, cancer cells can be exposed to fluid shear conditions. We examined two breast cancer cell lines, MDA-MB-468 (less metastatic) and MDA-MB-231 (more metastatic), and a benign MCF-10A epithelial cell line for their responsiveness in migration to fluid shear. We tested fluid shear at 15 dyne/cm2 that can be encountered during breast cancer cells traveling through blood vessels or metastasizing to mechanically active tissues such as bone. MCF-10A exhibited the least migration with a trend of migrating in the flow direction. Intriguingly, fluid shear played a potent role as a trigger for MDA-MB-231 cell migration, inducing directional migration along the flow with significantly increased displacement length and migration speed and decreased arrest coefficient relative to unflowed MDA-MB-231. In contrast, MDA-MB-468 cells were markedly less migratory than MDA-MB-231 cells, and responded very poorly to fluid shear. As a result, MDA-MB-468 cells did not exhibit noticeable difference in migration between static and flow conditions, as was distinct in root-mean-square (RMS) displacement—an ensemble average of all participating cells. These may suggest that the difference between more metastatic MDA-MB-231 and less metastatic MDA-MB-468 breast cancer cells could be at least partly involved with their differential responsiveness to fluid shear stimulatory cues. Our study provides new data in regard to potential crosstalk between fluid shear and metastatic potential in mediating breast cancer cell migration. 
    more » « less
  5. Abstract Immunotherapy has revolutionized cancer treatment with the advent of advanced cell engineering techniques aimed at targeted therapy with reduced systemic toxicity. However, understanding the underlying immune–cancer interactions require development of advanced three-dimensional (3D) models of human tissues. In this study, we fabricated 3D tumor models with increasing complexity to study the cytotoxic responses of CD8 + T cells, genetically engineered to express mucosal-associated invariant T (MAIT) cell receptors, towards MDA-MB-231 breast cancer cells. Homotypic MDA-MB-231 and heterotypic MDA-MB-231/human dermal fibroblast tumor spheroids were primed with precursor MAIT cell ligand 5-amino-6-D-ribitylaminouracil (5-ARU). Engineered T cells effectively eliminated tumors after a 3 d culture period, demonstrating that the engineered T cell receptor recognized major histocompatibility complex class I-related (MR1) protein expressing tumor cells in the presence of 5-ARU. Tumor cell killing efficiency of engineered T cells were also assessed by encapsulating these cells in fibrin, mimicking a tumor extracellular matrix microenvironment. Expression of proinflammatory cytokines such as interferon gamma, interleukin-13, CCL-3 indicated immune cell activation in all tumor models, post immunotherapy. Further, in corroborating the cytotoxic activity, we found that granzymes A and B were also upregulated, in homotypic as well as heterotypic tumors. Finally, a 3D bioprinted tumor model was employed to study the effect of localization of T cells with respect to tumors. T cells bioprinted proximal to the tumor had reduced invasion index and increased cytokine secretion, which indicated a paracrine mode of immune–cancer interaction. Development of 3D tumor-T cell platforms may enable studying the complex immune–cancer interactions and engineering MAIT cells for cell-based cancer immunotherapies. 
    more » « less