skip to main content

Title: The genetics of phenotypic plasticity. XVII. Response to climate change

The world is changing at a rapid rate, threatening extinction for a large part of the world's biota. One potential response to those altered conditions is to evolve so as to be able to persist in place. Such evolution includes not just traits themselves, but also the phenotypic plasticity of those traits. We used individual‐based simulations to explore the potential of an evolving phenotypic plasticity to increase the probability of persistence in the response to either a step change or continual, directional change in the environment accompanied by within‐generation random environmental fluctuations. Populations could evolve by altering both their nonplastic and plastic genetic components. We found that phenotypic plasticity enhanced survival and adaptation if that plasticity was not costly. If plasticity was costly, for it to be beneficial the phenotypic magnitude of plasticity had to be great enough in the initial generations to overcome those costs. These results were not sensitive to either the magnitude of the within‐generation correlation between the environment of development and the environment of selection or the magnitude of the environmental fluctuations, except for very small phenotypic magnitudes of plasticity. So, phenotypic plasticity has the potential to enhance survival; however, more data are needed on the ubiquity of trait plasticity, the extent of costs of plasticity, and the rate of mutational input of genetic variation for plasticity.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Evolutionary Applications
Medium: X Size: p. 388-399
["p. 388-399"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Temporal variation is a powerful source of selection on life history strategies and functional traits in natural populations. Theory predicts that the rate and predictability of fluctuations should favor distinct strategies, ranging from phenotypic plasticity to bet-hedging, which are likely to have important consequences for species distribution patterns and their responses to environmental change. To date, we have few empirical studies that test those predictions in natural systems, and little is known about how genetic, environmental, and developmental factors interact to define the “fluctuation niche” of species in temporally variable environments. In this study, we evaluated the effects of hydrological variability on fitness and functional trait variation in three closely related plant species in the genus Lasthenia that occupy different microhabitats within vernal pool landscapes. Using a controlled greenhouse experiment, we manipulated the mean and variability in hydrological conditions by growing plants at different depths with respect to a shared water table and manipulating the magnitude of stochastic fluctuations in the water table over time. We found that all species had similarly high relative fitness above the water table, but differed in their sensitivities to water table fluctuations. Specifically, the two species from vernal pools basins, where soil moisture is controlled by a perched water table, were negatively affected by the stochasticity treatments. In contrast, a species from the upland habitat surrounding vernal pools, where stochastic precipitation events control soil moisture variation, was insensitive to experimental fluctuations in the water table. We found strong signatures of genetic, environmental (plastic), and developmental variation in four traits that can influence plant hydrological responses. Three of these traits varied across plant development and among experimental treatments in directions that aligned with constitutive differences among species, suggesting that multiple sources of variation align to facilitate phenotypic matching with the hydrological environment in Lasthenia. We found little evidence for predicted patterns of phenotypic plasticity and bet-hedging in species and traits from predictable and stochastic environments, respectively. We propose that selection for developmental shifts in the hydrological traits of Lasthenia species has reduced or modified selection for plasticity at any given stage of development. Collectively, these results suggest that variation in species’ sensitivities to hydrological stochasticity may explain why vernal pool Lasthenia species do not occur in upland habitat, and that all three species integrate genetic, environmental, and developmental information to manage the unique patterns of temporal hydrological variation in their respective microhabitats.

    more » « less
  2. Fluctuating environmental conditions are ubiquitous in natural systems, and populations have evolved various strategies to cope with such fluctuations. The particular mechanisms that evolve profoundly influence subsequent evolutionary dynamics. One such mechanism is phenotypic plasticity, which is the ability of a single genotype to produce alternate phenotypes in an environmentally dependent context. Here, we use digital organisms (self-replicating computer programs) to investigate how adaptive phenotypic plasticity alters evolutionary dynamics and influences evolutionary outcomes in cyclically changing environments. Specifically, we examined the evolutionary histories of both plastic populations and non-plastic populations to ask: (1) Does adaptive plasticity promote or constrain evolutionary change? (2) Are plastic populations better able to evolve and then maintain novel traits? And (3), how does adaptive plasticity affect the potential for maladaptive alleles to accumulate in evolving genomes? We find that populations with adaptive phenotypic plasticity undergo less evolutionary change than non-plastic populations, which must rely on genetic variation from de novo mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic populations undergo more frequent selective sweeps and accumulate many more genetic changes. We find that the repeated selective sweeps in non-plastic populations drive the loss of beneficial traits and accumulation of maladaptive alleles, whereas phenotypic plasticity can stabilize populations against environmental fluctuations. This stabilization allows plastic populations to more easily retain novel adaptive traits than their non-plastic counterparts. In general, the evolution of adaptive phenotypic plasticity shifted evolutionary dynamics to be more similar to that of populations evolving in a static environment than to non-plastic populations evolving in an identical fluctuating environment. All natural environments subject populations to some form of change; our findings suggest that the stabilizing effect of phenotypic plasticity plays an important role in subsequent adaptive evolution. 
    more » « less
  3. Abstract

    Species faced with rapidly shifting environments must be able to move, adapt, or acclimate in order to survive. One mechanism to meet this challenge is phenotypic plasticity: altering phenotype in response to environmental change. Here, we investigated the magnitude, direction, and consequences of changes in two key phenology traits (fall bud set and spring bud flush) in a widespread riparian tree species,Populus fremontii. Using replicated genotypes from 16 populations from throughout the species’ thermal range, and reciprocal common gardens at hot, warm, and cool sites, we identified four major findings: (a) There are significant genetic (G), environmental (E), and GxE components of variation for both traits across three common gardens; (b) The magnitude of phenotypic plasticity is correlated with provenance climate, where trees from hotter, southern populations exhibited up to four times greater plasticity compared to the northern, frost‐adapted populations; (c) Phenological mismatches are correlated with higher mortality as the transfer distances between provenance and garden increase; and (d) The relationship between plasticity and survival depends not only on the magnitude and direction of environmental transfer, but also on the type of environmental stress (i.e., heat or freezing), and how particular traits have evolved in response to that stress. Trees transferred to warmer climates generally showed small to moderate shifts in an adaptive direction, a hopeful result for climate change. Trees experiencing cooler climates exhibited large, non‐adaptive changes, suggesting smaller transfer distances for assisted migration. This study is especially important as it deconstructs trait responses to environmental cues that are rapidly changing (e.g., temperature and spring onset) and those that are fixed (photoperiod), and that vary across the species’ range. Understanding the magnitude and adaptive nature of phenotypic plasticity of multiple traits responding to multiple environmental cues is key to guiding restoration management decisions as climate continues to change.

    more » « less
  4. Abstract

    Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12°C temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world.

    more » « less
  5. David A. Gray (Ed.)

    The ability to respond to environmental changes plays a crucial role for coping with environmental stressors related to climate change. Substantial changes in environmental conditions can overcome developmental homeostasis, exposing cryptic genetic variation. The katydidNeoconocephalus triopsis a tropical species that extended its range to the more seasonal environment of North America where it has two reproductive generations per year. The harsher winter conditions required adults to diapause which resulted in substantially different mating calls of the diapausing winter animals compared to the non-overwintering summer animals in northern Florida. The summer call corresponds to that of tropical populations, whereas the winter call represents the alternative call phenotype. We quantified call plasticity in a tropical (Puerto Rico) and a temperate population ofN. triops(Florida) that differ in experiencing winter conditions in their geographic regions. We hypothesized that the plastic call traits, i.e., double-pulse rate and call structure, are regulated independently. Further, we hypothesized that phenotypic plasticity of double-pulse rate results in quantitative changes, whereas that of call structure in qualitative changes. We varied the photoperiod and duration of diapause during male juvenile and adult development during rearing and analyzed the double-pulse rate and call structure of the animals. Double-pulse rate changed in a quantitative fashion in both populations and significant changes appeared at different developmental points, i.e., the double-pulse rate slowed down during juvenile development in Florida, whereas during adult diapause in Puerto Rico. In the Florida population, both the number of males producing and the proportion of total call time covered by the alternative call structure (= continuous calls) increased with duration spent in diapause. In the Puerto Rico population, expression of the alternative call structure was extremely rare. Our results suggest that the expression of both pulse rate and call structure was quantitative and not categorical. Our systematic variation of environmental variables demonstrated a wide range of phenotypic variation that can be induced during development. Our study highlights the evolutionary potential of hidden genetic variation and phenotypic plasticity when confronted with rapidly changing environments and their potential role in providing variation necessary for communication systems to evolve.

    more » « less