skip to main content

Title: Photolithographic Patterning of Organic Color‐Centers

Organic color‐centers (OCCs) have emerged as promising single‐photon emitters for solid‐state quantum technologies, chemically specific sensing, and near‐infrared bioimaging. However, these quantum light sources are currently synthesized in bulk solution, lacking the spatial control required for on‐chip integration. The ability to pattern OCCs on solid substrates with high spatial precision and molecularly defined structure is essential to interface electronics and advance their quantum applications. Herein, a lithographic generation of OCCs on solid‐state semiconducting single‐walled carbon nanotube films at spatially defined locations is presented. By using light‐driven diazoether chemistry, it is possible to directly patternp‐nitroaryl OCCs, which demonstrate chemically specific spectral signatures at programmed positions as confirmed by Raman mapping and hyperspectral photoluminescence imaging. This light‐driven technique enables the fabrication of OCC arrays on solid films that fluoresce in the shortwave infrared and presents an important step toward the direct writing of quantum emitters and other functionalities at the molecular level.

more » « less
Award ID(s):
1904488 1626288
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Chemical defects that fluoresce in the shortwave infrared open exciting opportunities in deep-penetration bioimaging, chemically specific sensing, and quantum technologies. However, the atomic size of defects and the high noise of infrared detectors have posed significant challenges to the studies of these unique emitters. Here we demonstrate high throughput single-defect spectroscopy in the shortwave infrared capable of quantitatively and spectrally resolving chemical defects at the single defect level. By cooling an InGaAs detector array down to −190 °C and implementing a nondestructive readout scheme, we are able to capture low light fluorescent events in the shortwave infrared with a signal-to-noise ratio improved by more than three orders-of-magnitude. As a demonstration, we show it is possible to resolve individual chemical defects in carbon nanotube semiconductors, simultaneously collecting a full spectrum for each defect within the entire field of view at the single defect limit.

    more » « less
  2. Abstract

    Solid‐state single photon emitters (SPEs) within atomically thin transition metal dichalcogenides (TMDs) have recently attracted interest as scalable quantum light sources for quantum photonic technologies. Among TMDs, WSe2monolayers (MLs) are promising for the deterministic fabrication and engineering of SPEs using local strain fields. The ability to reliably produce isolatable SPEs in WSe2is currently impeded by the presence of numerous spectrally overlapping states that occur at strained locations. Here nanoparticle (NP) arrays with precisely defined positions and sizes are employed to deterministically create strain fields in WSe2MLs, thus enabling the systematic investigation and control of SPE formation. Using this platform, electron beam irradiation at NP‐strained locations transforms spectrally overlapped sub‐bandgap emission states into isolatable, anti‐bunched quantum emitters. The dependence of the emission spectra of WSe2MLs as a function of strain magnitude and exposure time to electron beam irradiation is quantified and provides insight into the mechanism for SPE production. Excitons selectively funnel through strongly coupled sub‐bandgap states introduced by electron beam irradiation, which suppresses spectrally overlapping emission pathways and leads to measurable anti‐bunched behavior. The findings provide a strategy to generate isolatable SPEs in 2D materials with a well‐defined energy range.

    more » « less
  3. Thermal emission is the process by which all objects at nonzero temperatures emit light and is well described by the Planck, Kirchhoff, and Stefan–Boltzmann laws. For most solids, the thermally emitted power increases monotonically with temperature in a one-to-one relationship that enables applications such as infrared imaging and noncontact thermometry. Here, we demonstrated ultrathin thermal emitters that violate this one-to-one relationship via the use of samarium nickel oxide (SmNiO3), a strongly correlated quantum material that undergoes a fully reversible, temperature-driven solid-state phase transition. The smooth and hysteresis-free nature of this unique insulator-to-metal phase transition enabled us to engineer the temperature dependence of emissivity to precisely cancel out the intrinsic blackbody profile described by the Stefan–Boltzmann law, for both heating and cooling. Our design results in temperature-independent thermally emitted power within the long-wave atmospheric transparency window (wavelengths of 8 to 14 µm), across a broad temperature range of ∼30 °C, centered around ∼120 °C. The ability to decouple temperature and thermal emission opens a gateway for controlling the visibility of objects to infrared cameras and, more broadly, opportunities for quantum materials in controlling heat transfer.

    more » « less
  4. Abstract

    A key obstacle for all quantum information science and engineering platforms is their lack of scalability. The discovery of emergent quantum phenomena and their applications in active photonic quantum technologies have been dominated by work with single atoms, self‐assembled quantum dots, or single solid‐state defects. Unfortunately, scaling these systems to many quantum nodes remains a significant challenge. Solution‐processed quantum materials are uniquely positioned to address this challenge, but the quantum properties of these materials have remained generally inferior to those of solid‐state emitters or atoms. Additionally, systematic integration of solution‐processed materials with dielectric nanophotonic structures has been rare compared to other solid‐state systems. Recent progress in synthesis processes and nanophotonic engineering, however, has demonstrated promising results, including long coherence times of emitted single photons and deterministic integration of emitters with dielectric nano‐cavities. In this review article, these recent experiments using solution‐processed quantum materials and dielectric nanophotonic structures are discussed. The progress in non‐classical light state generation, exciton‐polaritonics for quantum simulation, and spin‐physics in these materials is discussed and an outlook for this emerging research field is provided.

    more » « less
  5. Abstract

    Isolated spins are the focus of intense scientific exploration due to their potential role as qubits for quantum information science. Optical access to single spins, demonstrated in III-V semiconducting quantum dots, has fueled research aimed at realizing quantum networks. More recently, quantum emitters in atomically thin materials such as tungsten diselenide have been demonstrated to host optically addressable single spins by means of electrostatic doping the localized excitons. Electrostatic doping is not the only route to charging localized quantum emitters and another path forward is through band structure engineering using van der Waals heterojunctions. Critical to this second approach is to interface tungsten diselenide with other van der Waals materials with relative band-alignments conducive to the phenomenon of charge transfer. In this work we show that the Type-II band-alignment between tungsten diselenide and chromium triiodide can be exploited to excite localized charged excitons in tungsten diselenide. Leveraging spin-dependent charge transfer in the device, we demonstrate spin selectivity in the preparation of the spin-valley state of localized single holes. Combined with the use of strain-inducing nanopillars to coordinate the spatial location of tungsten diselenide quantum emitters, we uncover the possibility of realizing large-scale deterministic arrays of optically addressable spin-valley holes in a solid state platform.

    more » « less