skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Large Anisotropic Enhancement of the Charge Carrier Mobility of Flexible Organic Transistors with Strain: A Hall Effect and Raman Study
Abstract Utilizing the intrinsic mobility–strain relationship in semiconductors is critical for enabling strain engineering applications in high‐performance flexible electronics. Here, measurements of Hall effect and Raman spectra of an organic semiconductor as a function of uniaxial mechanical strain are reported. This study reveals a very strong, anisotropic, and reversible modulation of the intrinsic (trap‐free) charge carrier mobility of single‐crystal rubrene transistors with strain, showing that the effective mobility of organic circuits can be enhanced by up to 100% with only 1% of compressive strain. Consistently, Raman spectroscopy reveals a systematic shift of the low‐frequency Raman modes of rubrene to higher (lower) frequencies with compressive (tensile) strain, which is indicative of a reduction (enhancement) of thermal molecular disorder in the crystal with strain. This study lays the foundation of the strain engineering in organic electronics and advances the knowledge of the relationship between the carrier mobility, low‐frequency vibrational modes, strain, and molecular disorder in organic semiconductors.  more » « less
Award ID(s):
1806363
PAR ID:
10458595
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
7
Issue:
1
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High‐mobility crystalline organic semiconductors are important for applications in advanced organic electronics and photonics. Photogeneration and transport of mobile photocarriers in these materials, although very important, remain underexplored. The photo‐Hall effect can be used to address the fundamental charge transport properties of these functional molecular materials, without the need for fabricating complex transistor devices or chemical doping. Here, a photo‐Hall effect is demonstrated in organic semiconductors, using a benchmark molecular system rubrene as an experimental platform. It is shown that this technique can be used to directly measure the charge carrier mobility and photocarrier density, decouple the surface and bulk transport phenomena, and thus significantly deepen the understanding of the mechanism of photoconductivity in these high‐performance molecular materials. 
    more » « less
  2. null (Ed.)
    The exceptionally high carrier mobility of rubrene derives from the combination of its intrinsic electronic properties and favorable crystal packing that facilitates charge transport. Unlike the planar conformations adopted by rubrene single crystals, however, many rubrene derivatives crystallize with a twisted tetracene core and exhibit poor carrier mobility. Typical density functional theory (DFT) calculations suggest that the twisted conformation is preferred by ∼10–14 kJ mol −1 or more in the gas phase. However, the present work shows that those calculations overestimate the twisting energy by several kJ mol −1 due to density-driven delocalization error, and that the twisting energies are actually only ∼8–10 kJ mol −1 for typical rubrene derivatives when computed with higher-level correlated wave function models. This result has two significant implications for crystal engineering with rubrene derivatives: first, DFT calculations can erroneously predict polymorphs containing twisted rubrene conformations to be more stable, when in fact structures with planar conformations are preferred, as is demonstrated here for perfluororubrene. Second, the smaller twisting energies make it more likely that solid form screening could discover new planar-core polymorphs of rubrene derivatives that have previously been crystallized only in a twisted conformation. These in turn might exhibit better organic semiconducting properties. 
    more » « less
  3. Abstract Organic semiconductors (OSCs) have garnered significant attention due to their potential use in flexible, lightweight, and cost‐effective electronic devices. Despite their promise, the assembly of organic molecules into the condensed phase promotes a diverse set of lattice dynamics that introduce a detrimental modulation in the intermolecular electronic structure—termed dynamic disorder—that results in charge carrier mobilities that are orders of magnitude lower than inorganic semiconductors. This dynamic disorder is generally associated with low‐frequency phonons, yet whether a small subset of modes or a broad range of phonons  drives dynamic disorder remains contested. Resolving this debate is critical for defining how targeted phonon engineering could practically improve OSC performance. In this review, we explore progress toward uncovering the interplay between lattice dynamics and charge transport in OSCs, focusing on the critical role of thermally activated phonons. We describe the powerful insight that mode‐resolved analyses of electron–phonon interactions lends toward the rational design of new materials. We highlight recent efforts to achieve this, showcasing proposed strategies to mitigate dynamic disorder through molecular and crystal design. This work offers an overview of the insight gained toward understanding the fundamental mechanisms governing charge transport in OSCs and outlines pathways for enhancing performance via targeted manipulation of interatomic/intermolecular interactions and resulting phonon modes. 
    more » « less
  4. Abstract Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS‐P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending‐induced ferroelastic transition of TIPS‐P, flexible single‐crystal electronic devices were obtained that can tolerate strains (ϵ) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ>0.7 μ0). Our work will pave the way for high‐performance ultraflexible single‐crystal organic electronics for sensors, memories, and robotic applications. 
    more » « less
  5. Rubrene is one of the leading organic semiconductors in scientific and industrial research, showing good conductivities and utilities in devices such as organic field-effect transistors. In these applications, the rubrene crystals often contact ionic liquids and other materials. Consequently, their surface properties and interfacial interactions influence the device’s performance. Although rubrene has been extensively studied with multiple structure characterization techniques, a complete description of the structure of rubrene single-crystal surfaces at the molecular level remains elusive. This study elucidates the molecular orientation and arrangement on the surface of rubrene single crystals with sum frequency generation (SFG) spectroscopy and reflection high-energy electron diffraction, respectively. The results confirm the near-surface unit cells with in-plane lattice parameters of a = 7.24 Å and b = 14.3 Å and an out-of-plane constant of c = 26.9 Å. Furthermore, the SFG analysis yields the tilt and rotation angles of θ = 15° and φ = 43° with respect to the crystalline c and a axes, respectively, and an in-plane twist of ψ = 3° for the surface phenyl rings. 
    more » « less