Sodium‐on batteries (SIBs) are promising alternatives to lithium‐ion batteries (LIBs) because of the low cost, abundance, and high sustainability of sodium resources. Analogous to LIBs, the high‐capacity electrodes in SIBs always suffer from rapid capacity decay upon long‐term cycling due to the particle pulverization induced by a large volume change. Circumventing particle pulverization plays a critical role in developing high‐energy and long‐life SIBs. Herein, tetrahydroxy‐1,4‐benzoquinone disodium salt (TBDS) that can self‐heal the cracks by hydrogen bonding between hydroxyl group and carbonyl group is employed as a cathode for sustainable and stable SIBs. The self‐healing TBDS exhibits long cycle life of 1000 cycles with a high rate capability up to 2 A g−1due to the fast Na‐ion diffusion reaction in the TBDS cathode. The intermolecular hydrogen bonding has been comprehensively characterized to understand the self‐healing mechanism. The hydrogen bonding‐enabled self‐healing organic materials are promising for developing high‐energy and long‐cycle‐life SIBs. 
                        more » 
                        « less   
                    
                            
                            Significantly Improved Cyclability of Conversion‐Type Transition Metal Oxyfluoride Cathodes by Homologous Passivation Layer Reconstruction
                        
                    
    
            Abstract Electrode stabilization by surface passivation has been explored as the most crucial step to develop long‐cycle lithium‐ion batteries (LIBs). In this work, functionally graded materials consisting of “conversion‐type” iron‐doped nickel oxyfluoride (NiFeOF) cathode covered with a homologous passivation layer (HPL) are rationally designed for long‐cycle LIBs. The compact and fluorine‐rich HPL plays dual roles in suppressing the volume change of NiFeOF porous cathode and minimizing the dissolution of transition metals during LIBs cycling by forming a structure/composition gradient. The structure and composition of HPL reconstructs during lithiation/delithiation, buffering the volume change and trapping the dissolved transition metals. As a result, a high capacity of 175 mAh g−1(equal to an outstanding volumetric capacity of 936 Ah L−1) with a greatly reduced capacity decay rate of 0.012% per cycle for 1000 cycles is achieved, which is superior to the NiFeOF porous film without HPL and commercially available NiF2‐FeF3powders. The proposed chemical and structure reconstruction mechanism of HPL opens a new avenue for the novel materials development for long‐cycle LIBs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1851674
- PAR ID:
- 10458603
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- Volume:
- 10
- Issue:
- 9
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract With the rapid growth of the lithium‐ion battery (LIBs) market, recycling and re‐use of end‐of‐life LIBs to reclaim lithium (Li) and transition metal (TM) resources (e.g., Co, Ni), as well as eliminating pollution from disposal of waste batteries, has become an urgent task. Here, for the first time the ambient‐pressure relithiation of degraded LiNi0.5Co0.2Mn0.3O2(NCM523) cathodes via eutectic Li+molten‐salt solutions is successfully demonstrated. Combining such a low‐temperature relithiation process with a well‐designed thermal annealing step, NCM523 cathode particles with significant Li loss (≈40%) and capacity degradation (≈50%) can be successfully regenerated to achieve their original composition and crystal structures, leading to effective recovery of their capacity, cycling stability, and rate capability to the levels of the pristine materials. Advanced characterization tools including atomic resolution electron microscopy imaging and electron energy loss spectroscopy are combined to demonstrate that NCM523's original layered crystal structure is recovered. For the first time, it is shown that layer‐to‐rock salt phase change on the surfaces and subsurfaces of the cathode materials can be reversed if lithium can be incorporated back to the material. The result suggests the great promise of using eutectic Li+molten–salt solutions for ambient‐pressure relithiation to recycle and remanufacture degraded LIB cathode materials.more » « less
- 
            Direct recycling methods offer a non‐destructive way to regenerate degraded cathode material. The materials to be recycled in the industry typically constitute a mixture of various cathode materials extracted from a wide variety of retired lithium‐ion batteries. Bridging the gap, a direct recycling method using a low‐temperature sintering process is reported. The degraded cathode mixture of LMO (LiMn2O4) and NMC (LiNiCoMnO2) extracted from retired LIBs was successfully regenerated by the proposed method with a low sintering temperature of 300°C for 4 h. Advanced characterization tools were utilized to validate the full recovery of the crystal structure in the degraded cathode mixture. After regeneration, LMO/NMC cathode mixture shows an initial capacity of 144.0 mAh g−1and a capacity retention of 95.1% at 0.5 C for 250 cycles. The regenerated cathode mixture also shows a capacity of 83 mAh g−1at 2 C, which is slightly higher compared to the pristine material. As a result of the direct recycling process, the electrochemical performance of degraded cathode mixture is recovered to the same level as the pristine material. Life‐cycle assessment results emphasized a 90.4% reduction in energy consumption and a 51% reduction in PM2.5 emissions for lithium‐ion battery packs using a direct recycled cathode mixture compared to the pristine material.more » « less
- 
            Abstract Lithium‐ion and sodium‐ion batteries (LIBs and SIBs) are crucial in our shift toward sustainable technologies. In this work, the potential of layered boride materials (MoAlB and Mo2AlB2) as novel, high‐performance electrode materials for LIBs and SIBs, is explored. It is discovered that Mo2AlB2shows a higher specific capacity than MoAlB when used as an electrode material for LIBs, with a specific capacity of 593 mAh g−1achieved after 500 cycles at 200 mA g−1. It is also found that surface redox reactions are responsible for Li storage in Mo2AlB2, instead of intercalation or conversion. Moreover, the sodium hydroxide treatment of MoAlB leads to a porous morphology and higher specific capacities exceeding that of pristine MoAlB. When tested in SIBs, Mo2AlB2exhibits a specific capacity of 150 mAh g−1at 20 mA g−1. These findings suggest that layered borides have potential as electrode materials for both LIBs and SIBs, and highlight the importance of surface redox reactions in Li storage mechanisms.more » « less
- 
            Abstract The metallic tin (Sn) anode is a promising candidate for next‐generation lithium‐ion batteries (LIBs) due to its high theoretical capacity and electrical conductivity. However, Sn suffers from severe mechanical degradation caused by large volume changes during lithiation/delithiation, which leads to a rapid capacity decay for LIBs application. Herein, a Cu–Sn (e.g., Cu3Sn) intermetallic coating layer (ICL) is rationally designed to stabilize Sn through a structural reconstruction mechanism. The low activity of the Cu–Sn ICL against lithiation/delithiation enables the gradual separation of the metallic Cu phase from the Cu–Sn ICL, which provides a regulatable and appropriate distribution of Cu to buffer volume change of Sn anode. Concurrently, the homogeneous distribution of the separated Sn together with Cu promotes uniform lithiation/delithiation, mitigating the internal stress. In addition, the residual rigid Cu–Sn intermetallic shows terrific mechanical integrity that resists the plastic deformation during the lithiation/delithiation. As a result, the Sn anode enhanced by the Cu–Sn ICL shows a significant improvement in cycling stability with a dramatically reduced capacity decay rate of 0.03% per cycle for 1000 cycles. The structural reconstruction mechanism in this work shines a light on new materials and structural design that can stabilize high‐performance and high‐volume‐change electrodes for rechargeable batteries and beyond.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
