New technologies are emerging which allow us to manipulate and assemble 2-dimensional (2D) building blocks, such as graphene, into synthetic van der Waals (vdW) solids. Assembly of such vdW solids has enabled novel electronic devices and could lead to control over anisotropic thermal properties through tuning of inter-layer coupling and phonon scattering. Here we report the systematic control of heat flow in graphene-based vdW solids assembled in a layer-by-layer (LBL) fashion. In-plane thermal measurements (between 100 K and 400 K) reveal substrate and grain boundary scattering limit thermal transport in vdW solids composed of one to four transferred layers of graphene grown by chemical vapor deposition (CVD). Such films have room temperature in-plane thermal conductivity of ~400 Wm−1 K−1. Cross-plane thermal conductance approaches 15 MWm−2 K−1for graphene-based vdW solids composed of seven layers of graphene films grown by CVD, likely limited by rotational mismatch between layers and trapped particulates remnant from graphene transfer processes. Our results provide fundamental insight into the in-plane and cross-plane heat carrying properties of substrate-supported synthetic vdW solids, with important implications for emerging devices made from artificially stacked 2D materials.
Since the isolation of graphene and numerous demonstrations of its unique properties, the expectations for this material to be implemented in many future commercial applications have been enormous. However, to date, challenges still remain. One of the key challenges is the fabrication of graphene in a manner that satisfies processing requirements. While transfer of graphene can be used, this tends to damage or contaminate it, which degrades its performance. Hence, there is an important drive to grow graphene directly over a number of technologically important materials, viz., different substrate materials, so as to avoid the need for transfer. One of the more successful approaches to synthesis graphene is chemical vapor deposition (CVD), which is well established. Historically, transition metal substrates are used due to their catalytic properties. However, in recent years this has developed to include many nonmetal substrate systems. Moreover, both solid and molten substrate forms have also been demonstrated. In addition, the current trend to progress flexible devices has spurred interest in graphene growth directly over flexible materials surfaces. All these aspects are presented in this review which presents the developments in available substrates for graphene fabrication by CVD, with a focus primarily on large area graphene.
more » « less- NSF-PAR ID:
- 10458624
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 7
- Issue:
- 7
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects ( e.g. , edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer ( k = 1.125 × 10 −2 cm s −1 ) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN) 6 ] −3/−4 , which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications.more » « less
-
Abstract Graphene has been a material of interest due to its versatile properties and wide variety of applications. However, production has been one of the most challenging aspects of graphene and multilayer graphene (MLG). Most synthesis techniques require elevated temperatures and additional steps to transfer graphene or MLG to a substrate, which compromises the integrity of the film. In this paper, metal-induced crystallization is explored to locally synthesize MLG directly on metal films, creating an MLG-metal composite and directly on insulating substrates with a moving resistive nanoheater probe at much lower temperature conditions (~ 250 °C). Raman spectroscopy shows that the resultant carbon structure has properties of MLG. The presented tip-based approach offers a much simpler MLG fabrication solution by eliminating the photolithographic and transfer steps of MLG.more » « less
-
The unique two-dimensional structure and outstanding electronic, thermal, and mechanical properties of graphene have attracted the interest of scientists and engineers from various fields. The first step in translating the excellent properties of graphene into practical applications is the preparation of large area, continuous graphene films. Chemical vapour deposition (CVD) graphene has received increasing attention because it provides access to large-area, uniform, and continuous films of high quality. However, current CVD synthetic techniques utilize metal substrates (Cu or Ni) to catalyse the growth of graphene and post-growth transfer of the graphene film to a substrate of interest is critical for most applications such as electronics, photonics, and spintronics. Here we discuss recent advances in the transfer of as-grown CVD graphene to target substrates. The methods that afford CVD graphene on a target substrate are summarized under three categories: transfer with a support layer, transfer without a support layer, and direct growth on target substrates. At present the first two groups dominate the field and research efforts are directed towards refining the choice of the support layer. The support layer plays a vital role in the transfer process because it has direct contact with the atomically thin graphene surface, affecting its properties and determining the quality of the transferred graphene.more » « less
-
Abstract Supercapacitors have emerged as one of the leading energy‐storage technologies due to their short charge/discharge time and exceptional cycling stability; however, the state‐of‐the‐art energy density is relatively low. Hybrid electrodes based on transition metal oxides and carbon‐based materials are considered to be promising candidates to overcome this limitation. Herein, a rational design of graphene/VO
x electrodes is proposed that incorporates vanadium oxides with multiple oxidation states onto highly conductive graphene scaffolds synthesized via a facile laser‐scribing process. The graphene/VOx electrodes exhibit a large potential window with a high three‐electrode specific capacitance of 1110 F g–1. The aqueous graphene/VOx symmetric supercapacitors (SSCs) can reach a high energy density of 54 Wh kg–1with virtually no capacitance loss after 20 000 cycles. Moreover, the flexible quasi‐solid‐state graphene/VOx SSCs can reach a very high energy density of 72 Wh kg–1, or 7.7 mWh cm–3, outperforming many commercial devices. WithR ct < 0.02 Ω and Coulombic efficiency close to 100%, these gel graphene/VOx SSCs can retain 92% of their capacitance after 20 000 cycles. The process enables the direct fabrication of redox‐active electrodes that can be integrated with essentially any substrate including silicon wafers and flexible substrates, showing great promise for next‐generation large‐area flexible displays and wearable electronic devices.