skip to main content


Title: Compounding Meta‐Atoms into Metamolecules with Hybrid Artificial Intelligence Techniques
Abstract

Molecules composed of atoms exhibit properties not inherent to their constituent atoms. Similarly, metamolecules consisting of multiple meta‐atoms possess emerging features that the meta‐atoms themselves do not possess. Metasurfaces composed of metamolecules with spatially variant building blocks, such as gradient metasurfaces, are drawing substantial attention due to their unconventional controllability of the amplitude, phase, and frequency of light. However, the intricate mechanisms and the large degrees of freedom of the multielement systems impede an effective strategy for the design and optimization of metamolecules. Here, a hybrid artificial‐intelligence‐based framework consolidating compositional pattern‐producing networks and cooperative coevolution to resolve the inverse design of metamolecules in metasurfaces is proposed. The framework breaks the design of the metamolecules into separate designs of meta‐atoms, and independently solves the smaller design tasks of the meta‐atoms through deep learning and evolutionary algorithms. The proposed framework is leveraged to design metallic metamolecules for arbitrary manipulation of the polarization and wavefront of light. Moreover, the efficacy and reliability of the design strategy are confirmed through experimental validations. This framework reveals a promising candidate approach to expedite the design of large‐scale metasurfaces in a labor‐saving, systematic manner.

 
more » « less
PAR ID:
10458699
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
6
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As 2D metamaterials, metasurfaces provide an unprecedented means to manipulate light with the ability to multiplex different functionalities in a single planar device. Currently, most pursuits of multifunctional metasurfaces resort to empirically accommodating more functionalities at the cost of increasing structural complexity, with little effort to investigate the intrinsic restrictions of given meta‐atoms and thus the ultimate limits in the design. In this work, it is proposed to embed machine‐learning models in both gradient‐based and nongradient optimization loops for the automatic implementation of multifunctional metasurfaces. Fundamentally different from the traditional two‐step approach that separates phase retrieval and meta‐atom structural design, the proposed end‐to‐end framework facilitates full exploitation of the prescribed design space and pushes the multifunctional design capacity to its physical limit. With a single‐layer structure that can be readily fabricated, metasurface focusing lenses and holograms are experimentally demonstrated in the near‐infrared region. They show up to eight controllable responses subjected to different combinations of working frequencies and linear polarization states, which are unachievable by the conventional physics‐guided approaches. These results manifest the superior capability of the data‐driven scheme for photonic design, and will accelerate the development of complex devices and systems for optical display, communication, and computing.

     
    more » « less
  2. Abstract

    In the rapidly developing field of nanophotonics, machine learning (ML) methods facilitate the multi‐parameter optimization processes and serve as a valuable technique in tackling inverse design challenges by predicting nanostructure designs that satisfy specific optical property criteria. However, while considerable efforts have been devoted to applying ML for designing the overall spectral response of photonic nanostructures, often without elucidating the underlying physical mechanisms, physics‐based models remain largely unexplored. Here, physics‐empowered forward and inverse ML models to design dielectric meta‐atoms with controlled multipolar responses are introduced. By utilizing the multipole expansion theory, the forward model efficiently predicts the scattering response of meta‐atoms with diverse shapes and the inverse model designs meta‐atoms that possess the desired multipole resonances. Implementing the inverse design model, uniquely shaped meta‐atoms with enhanced higher‐order magnetic resonances and those supporting a super‐scattering regime of light‐matter interactions resulting in nearly five‐fold enhancement of scattering beyond the single‐channel limit are designed. Finally, an ML model to predict the wavelength‐dependent electric field distribution inside and near the meta‐atom is developed. The proposed ML based models will likely facilitate uncovering new regimes of linear and nonlinear light‐matter interaction at the nanoscale as well as a versatile toolkit for nanophotonic design.

     
    more » « less
  3. Abstract

    Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy.

     
    more » « less
  4. Abstract

    Metasurfaces have drawn considerable attentions for their revolutionary capability of tailoring the amplitude, phase, and polarization of light. By integrating the nonlinear optical processes into metasurfaces, new wavelengths are introduced as an extra degree of freedom for further advancing the device performance. However, most of the existing nonlinear plasmonic metasurfaces are based on metallic nanoantennas as meta‐atoms, suffering from strong background transmission, low laser damage threshold and small nonlinear conversion efficiency. Here, Babinet‐inverted plasmonic metasurfaces made of C‐shaped nanoapertures as meta‐atoms are designed and demonstrated to solve these issues. Rotation‐gradient nonlinear metasurfaces are further constructed for producing spin‐selective second‐harmonic vortex beams with the orbital angular momentum (OAM) and beam diffraction angle determined by both the spin states of the fundamental wave and second‐harmonic emission. The results enable new types of functional metasurface chips for applications in spin, OAM, and wavelength multiplexed optical trapping, all‐optical communication, and optical data storage.

     
    more » « less
  5. Abstract

    Metasurfaces are two-dimensional nanoantenna arrays that can control the propagation of light at will. In particular, plasmonic metasurfaces feature ultrathin thicknesses, ease of fabrication, field confinement beyond the diffraction limit, superior nonlinear properties, and ultrafast performances. However, the technological relevance of plasmonic metasurfaces operating in the transmission mode at optical frequencies is questionable due to their limited efficiency. The state-of-the-art efficiency of geometric plasmonic metasurfaces at visible and near-infrared frequencies, for example, is ≤10%. Here, we report a multipole-interference-based transmission-type geometric plasmonic metasurface with a polarization conversion efficiency that reaches 42.3% at 744 nm, over 400% increase over the state of the art. The efficiency is augmented by breaking the scattering symmetry due to simultaneously approaching the generalized Kerker condition for two orthogonal polarizations. In addition, the design of the metasurface proposed in this study introduces an air gap between the antennas and the surrounding media that confines the field within the gap, which mitigates the crosstalk between meta-atoms and minimizes metallic absorption. The proposed metasurface is broadband, versatile, easy to fabricate, and highly tolerant to fabrication errors. We highlight the technological relevance of our plasmonic metasurface by demonstrating a transmission-type beam deflector and hologram with record efficiencies.

     
    more » « less