skip to main content


Title: Electrospinning Piezoelectric Fibers for Biocompatible Devices
Abstract

The field of nanotechnology has been gaining great success due to its potential in developing new generations of nanoscale materials with unprecedented properties and enhanced biological responses. This is particularly exciting using nanofibers, as their mechanical and topographic characteristics can approach those found in naturally occurring biological materials. Electrospinning is a key technique to manufacture ultrafine fibers and fiber meshes with multifunctional features, such as piezoelectricity, to be available on a smaller length scale, thus comparable to subcellular scale, which makes their use increasingly appealing for biomedical applications. These include biocompatible fiber‐based devices as smart scaffolds, biosensors, energy harvesters, and nanogenerators for the human body. This paper provides a comprehensive review of current studies focused on the fabrication of ultrafine polymeric and ceramic piezoelectric fibers specifically designed for, or with the potential to be translated toward, biomedical applications. It provides an applicative and technical overview of the biocompatible piezoelectric fibers, with actual and potential applications, an understanding of the electrospinning process, and the properties of nanostructured fibrous materials, including the available modeling approaches. Ultimately, this review aims at enabling a future vision on the impact of these nanomaterials as stimuli‐responsive devices in the human body.

 
more » « less
PAR ID:
10458762
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
9
Issue:
1
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electrospinning has emerged as a versatile and accessible technology for fabricating polymer fibers, particularly for biological applications. Natural polymers or biopolymers (including synthetically derivatized natural polymers) represent a promising alternative to synthetic polymers, as materials for electrospinning. Many biopolymers are obtained from abundant renewable sources, are biodegradable, and possess inherent biological functions. This review surveys recent literature reporting new fibers produced from emerging biopolymers, highlighting recent developments in the use of sulfated polymers (including carrageenans and glycosaminoglycans), tannin derivatives (condensed and hydrolyzed tannins, tannic acid), modified collagen, and extracellular matrix extracts. The proposed advantages of these biopolymer‐based fibers, focusing on their biomedical applications, are also discussed to highlight the use of new and emerging biopolymers (or new modifications to well‐established ones) to enhance or achieve new properties for electrospun fiber materials.

     
    more » « less
  2. Fibrous wearable and implantable devices have emerged as a promising technology, offering a range of new solutions for minimally invasive monitoring of human health. Compared to traditional biomedical devices, fibers offer a possibility for a modular design compatible with large-scale manufacturing and a plethora of advantages including mechanical compliance, breathability, and biocompatibility. The new generation of fibrous biomedical devices can revolutionize easy-to-use and accessible health monitoring systems by serving as building blocks for most common wearables such as fabrics and clothes. Despite significant progress in the fabrication, materials, and application of fibrous biomedical devices, there is still a notable absence of a comprehensive and systematic review on the subject. This review paper provides an overview of recent advancements in the development of fibrous wearable and implantable electronics. We categorized these advancements into three main areas: manufacturing processes, platforms, and applications, outlining their respective merits and limitations. The paper concludes by discussing the outlook and challenges that lie ahead for fiber bioelectronics, providing a holistic view of its current stage of development.

     
    more » « less
  3. The combination of protein and polysaccharides with magnetic materials has been implemented in biomedical applications for decades. Proteins such as silk, collagen, and elastin and polysaccharides such as chitosan, cellulose, and alginate have been heavily used in composite biomaterials. The wide diversity in the structure of the materials including their primary monomer/amino acid sequences allow for tunable properties. Various types of these composites are highly regarded due to their biocompatible, thermal, and mechanical properties while retaining their biological characteristics. This review provides information on protein and polysaccharide materials combined with magnetic elements in the biomedical space showcasing the materials used, fabrication methods, and their subsequent applications in biomedical research. 
    more » « less
  4. Electrospinning is a straightforward approach for efficiently creating continuous fibers within the submicron to nanometer size range. Electrospun fibers possess excellent properties like high porosity, large specific surface area, tunable morphology, small diameter, etc., making them desirable in various applications. Because of its various properties, polymer is one of the most used materials as the spinning solution in electrospinning. Electrospun polymeric fibers, by themselves, may serve limited applications. Therefore, they are usually mixed with other materials to serve many applications. There are many ways in which these other materials are mixed with polymers in electrospinning, like doping, surface treatment, functionalization, etc. There are several studies published that report on the various composite fibers produced using electrospinning. However, a review focused solely on the production of heterogeneous fibers, where the electrospun fibers are intrinsically made of more than one material, is lacking. Herein, we review different heterogeneous fibers synthesized using electrospinning and their fabrication methods.

     
    more » « less
  5. In this study, morphology and in vitro response of electroconductive composite nanofibers were explored for biomedical use. The composite nanofibers were prepared by blending the piezoelectric polymer poly(vinylidene fluoride–trifluorethylene) (PVDF-TrFE) and electroconductive materials with different physical and chemical properties such as copper oxide (CuO), poly(3-hexylthiophene) (P3HT), copper phthalocyanine (CuPc), and methylene blue (MB) resulting in unique combinations of electrical conductivity, biocompatibility, and other desirable properties. Morphological investigation via SEM analysis has remarked some differences in fiber size as a function of the electroconductive phase used, with a reduction of fiber diameters for the composite fibers of 12.43% for CuO, 32.87% for CuPc, 36.46% for P3HT, and 63% for MB. This effect is related to the peculiar electroconductive behavior of fibers: measurements of electrical properties showed the highest ability to transport charges of methylene blue, in accordance with the lowest fibers diameters, while P3HT poorly conducts in air but improves charge transfer during the fiber formation. In vitro assays showed a tunable response of fibers in terms of viability, underlining a preferential interaction of fibroblast cells to P3HT-loaded fibers that can be considered the most suitable for use in biomedical applications. These results provide valuable information for future studies to be addressed at optimizing the properties of composite nanofibers for potential applications in bioengineering and bioelectronics. 
    more » « less