skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UNet++ with Attention Mechanism for Hippocampus Segmentation
Analyzing the hippocampus in the brain through magnetic resonance imaging (MRI) plays a crucial role in diagnosing and making treatment decisions for several neurological diseases. Hippocampus atrophy is among the most informative early diagnostic biomarkers of Alzheimer's disease (AD), yet its automatic segmentation is extremely difficult given the anatomical structure of the brain and the lack of any contrast in between its different regions. The gold standard remains manual segmentation and the use of brain atlases. In this study, we use a well-known image segmentation model, UNet++, and introduce an attention mechanism called the Convolutional Block Attention Module (CBAM) to the UNet++ model. This integrated model improves the feature weights of our region of interest, and hence increases the accuracy in segmenting the hippocampus. Results show averages of 0.8715, 0.8107, 0.8872, and 0.9039 for the metrics of Dice, Jaccard, Precision, and Recall, respectively.  more » « less
Award ID(s):
1920182 1551221
PAR ID:
10458807
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2022 International Conference on Computational Science and Computational Intelligence (CSCI)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The hippocampus is a crucial brain structure involved in memory formation, spatial navigation, emotional regulation, and learning. An accurate MRI image segmentation of the human hippocampus plays an important role in multiple neuro-imaging research and clinical practice, such as diagnosing neurological diseases and guiding surgical interventions. While most hippocampus segmentation studies focus on using T1-weighted or T2-weighted MRI scans, we explore the use of diffusion-weighted MRI (dMRI), which offers unique insights into the microstructural properties of the hippocampus. Particularly, we utilize various anisotropy measures derived from diffusion MRI (dMRI), including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, for a multi-contrast deep learning approach to hippocampus segmentation. To exploit the unique benefits offered by various contrasts in dMRI images for accurate hippocampus segmentation, we introduce an innovative multimodal deep learning architecture integrating cross-attention mechanisms. Our proposed framework comprises a multi-head encoder designed to transform each contrast of dMRI images into distinct latent spaces, generating separate image feature maps. Subsequently, we employ a gated cross-attention unit following the encoder, which facilitates the creation of attention maps between every pair of image contrasts. These attention maps serve to enrich the feature maps, thereby enhancing their effectiveness for the segmentation task. In the final stage, a decoder is employed to produce segmentation predictions utilizing the attention-enhanced feature maps. The experimental outcomes demonstrate the efficacy of our framework in hippocampus segmentation and highlight the benefits of using multi-contrast images over single-contrast images in diffusion MRI image segmentation. 
    more » « less
  2. A brain tumor is an abnormal growth in the brain that disrupts its functionality and poses a significant threat to human life by damaging neurons. Early detection and classification of brain tumors are crucial to prevent complications and maintain good health. Recent advancements in deep learning techniques have shown immense potential in image classification and segmentation for tumor identification and classification. In this study, we present a platform, BrainView, for detection, and segmentation of brain tumors from Magnetic Resonance Images (MRI) using deep learning. We utilized EfficientNetB7 pre-trained model to design our proposed DeepBrainNet classification model for analyzing brain MRI images to classify its type. We also proposed a EfficinetNetB7 based image segmentation model, called the EffB7-UNet, for tumor localization. Experimental results show significantly high classification (99.96%) and segmentation (92.734%) accuracies for our proposed models. Finally, we discuss the contours of a cloud application for BrainView using Flask and Flutter to help researchers and clinicians use our machine learning models online for research purposes. 
    more » « less
  3. Medical image segmentation has played an important role in medical analysis and widely developed for many clinical applications. Deep learning-based approaches have achieved high performance in semantic segmentation but they are limited to pixel-wise setting and imbalanced classes data problem. In this paper, we tackle those limitations by developing a new deep learning-based model which takes into account both higher feature level i.e. region inside contour, intermediate feature level i.e. offset curves around the contour and lower feature level i.e. contour. Our proposed Offset Curves (OsC) loss consists of three main fitting terms. The first fitting term focuses on pixel-wise level segmentation whereas the second fitting term acts as attention model which pays attention to the area around the boundaries (offset curves). The third terms plays a role as regularization term which takes the length of boundaries into account. We evaluate our proposed OsC loss on both 2D network and 3D network. Two common medical datasets, i.e. retina DRIVE and brain tumor BRATS 2018 datasets are used to benchmark our proposed loss performance. The experiments have shown that our proposed OsC loss function outperforms other mainstream loss functions such as Cross-Entropy, Dice, Focal on the most common segmentation networks Unet, FCN. 
    more » « less
  4. Everyday experience requires processing external signals from the world around us and internal information retrieved from memory. To do both, the brain must fluctuate between states that are optimized for external versus internal attention. Here, we focus on the hippocampus as a region that may serve at the interface between these forms of attention and ask how it switches between prioritizing sensory signals from the external world versus internal signals related to memories and thoughts. Pharmacological, computational, and animal studies have identified input from the cholinergic basal forebrain as important for biasing the hippocampus toward processing external information, whereas complementary research suggests the dorsal attention network (DAN) may aid in allocating attentional resources toward accessing internal information. We therefore tested the hypothesis that the basal forebrain and DAN drive the hippocampus toward external and internal attention, respectively. We used data from 29 human participants (17 female) who completed two attention tasks during fMRI. One task (memory-guided) required proportionally more internal attention, and proportionally less external attention, than the other (explicitly instructed). We discovered that background functional connectivity between the basal forebrain and hippocampus was stronger during the explicitly instructed versus memory-guided task. In contrast, DAN–hippocampus background connectivity was stronger during the memory-guided versus explicitly instructed task. Finally, the strength of DAN–hippocampus background connectivity was correlated with performance on the memory-guided but not explicitly instructed task. Together, these results provide evidence that the basal forebrain and DAN may modulate the hippocampus to switch between external and internal attention. SIGNIFICANCE STATEMENTHow does the brain balance the need to pay attention to internal thoughts and external sensations? We focused on the human hippocampus, a region that may serve at the interface between internal and external attention, and asked how its functional connectivity varies based on attentional states. The hippocampus was more strongly coupled with the cholinergic basal forebrain when attentional states were guided by the external world rather than retrieved memories. This pattern flipped for functional connectivity between the hippocampus and dorsal attention network, which was higher for attention tasks that were guided by memory rather than external cues. Together, these findings show that distinct networks in the brain may modulate the hippocampus to switch between external and internal attention. 
    more » « less
  5. At any given moment, humans are bombarded with a constant stream of new information. But the brain can take in only a fraction of that information at once. So how does the brain decide what to pay attention to and what to ignore? Many laboratory studies of attention avoid this issue by simply telling participants what to attend to. But in daily life, people rarely receive instructions like that. Instead people must often rely on past experiences to guide their attention. When cycling close to home, for example, a person knows to watch out for the blind junction at the top of the hill and for the large pothole just around the corner. Günseli and Aly set out to bridge the gap between laboratory studies of attention and real-world experience by asking healthy volunteers to perform two versions of a task while lying inside a brain scanner. The task involved looking at pictures of rooms with different shapes. Each room also contained a different painting. In one version of the task, the volunteers were told to pay attention to either the paintings or to the room shapes. In the other version, the volunteers had to use previously memorized cues to work out for themselves whether they should focus on the paintings or on the shapes. The brain scans showed that two areas of the brain with roles in memory – the hippocampus and the prefrontal cortex – were involved in the task. Notably, both areas increased their activity when the volunteers used memory to guide their attention, compared to when they received instructions telling them what to focus on. Moreover, patterns of activity within the hippocampus and prefrontal cortex contained information about what the participants were about to focus on next – even before volunteers saw the particular picture that they were supposed to pay attention to. In the hippocampus, this was particularly the case when the volunteers based their decisions on memory. These results reveal a key way in which humans leverage memories of past experiences to help optimize future behavior. Understanding this process could shed light on why memory impairments make it harder for people to adjust their behavior to achieve specific goals. 
    more » « less