skip to main content


Title: Nitrate Pathways, Processes, and Timing in an Agricultural Karst System: Development and Application of a Numerical Model
Abstract

Nitrogen (N) contamination within agricultural‐karst landscapes and aquifers is widely reported; however, the complex hydrological pathways of karst make N fate difficult to ascertain. We developed a hydrologic and N numerical model for agricultural‐karst, including simulation of soil, epikarst, phreatic, and quick flow pathways as well as biochemical processes such as nitrification, mineralization, and denitrification. We tested the model on four years of nitrate (NO3) data collected from a phreatic conduit and an overlying surface channel in the Cane Run watershed, Kentucky, USA. Model results indicate that slow to moderate flow pathways (phreatic and epikarst) dominate the N load and account for nearly 90% of downstream NO3delivery. Further, quick flow pathways dilute NO3concentrations relative to background aquifer levels. Net denitrification distributed across soil, epikarst, and phreatic water removes approximately 36% of the N inputs to the system at rates comparable to nonkarst systems. Evidence is provided by numerical modeling that NO3accumulation via evapotranspiration in the soil followed by leaching through the epikarst acts as a control on spring NO3concentration and loading. Compared to a fluvial‐dominated immature karst system, mature‐karst systems behave as natural detention basins for NO3, temporarily delaying NO3delivery to downstream waters and maintaining elevated NO3concentrations for days to weeks after hydrologic activity ends. This study shows the efficacy of numerical modeling to elucidate complex pathways, processes, and timing of N in karst systems.

 
more » « less
NSF-PAR ID:
10458823
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
55
Issue:
3
ISSN:
0043-1397
Page Range / eLocation ID:
p. 2079-2103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nutrient dynamics in karst agroecosystems remain poorly understood, in part due to limited long‐term nested datasets that can discriminate upland and in‐stream processes. We present a 10‐year dataset from a karst watershed in the Inner‐Bluegrass Region of central Kentucky, consisting of nitrate (nitrate‐N [NO3]), dissolved reactive phosphorus (DRP), total organic carbon (TOC), and total ammoniacal‐N (TAN) measurements at nested spring and stream sites as well as flowrate at the watershed outlet. Hydrograph separation techniques were coupled with multiple linear regression and Empirical Mode Decomposition time‐series analysis to determine significance of seasonal processes and to generate continuous estimates of nutrient pathway loadings. Further, we used model results of benthic algae growth and decomposition dynamics from a nearby watershed to assess if transient storage in algal biomass could explain differences in spring and downstream watershed nutrient loading. Results highlight statistically significant seasonality for all nutrients at stream sites, but only for NO3at springs with longitudinal variability showing significant decreases occurring from spring to stream sites for NO3and DRP, and significant increases for TOC and TAN. Pathway loading analysis highlighted the importance of slow flow pathways to source approximately 70% of DRP and 80% of NO3. Results for in‐stream dynamics suggest that benthic autotroph dynamics can explain summer deviations for TOC, TAN, and DRP but not NO3. Regarding upland dynamics, our findings agree well with existing perceptions in karst for N pathways and upland source seasonality but deviate from perceptions that karst conduits are retentive of P, reflecting the limited buffering capacity of the soil profile and conduit sediments in the Inner‐Bluegrass. Regarding in‐stream fate, our findings highlighted the significance of seasonally driven nutrient processing in the bedrock‐controlled streambed to influence nutrient fluxes at the watershed outlet. Contrary to existing perceptions, we found high N attenuation and an unexplained NO3sink in the bedrock stream, leading us to postulate that floating macrophytes facilitate high rates of denitrification.

     
    more » « less
  2. Abstract

    Excessive nitrate threatens a wide range of water resources, aquatic habitats, and sensitive infrastructure. Despite this problem, tracing a nutrient from its eventual fate back to its origin remains an elusive challenge due to heterogeneity in how nutrient sources and hydrologic pathways are connected. Typically, this problem is underdetermined (i.e., too many unknowns, not enough equations) and cannot be solved with existing methodologies. The theory of optimal transport allows for the solution of underdetermined systems, and here we construct a novel formulation for its use in water quality modeling. Our objective was to develop an optimal transport modeling framework—coupled to Bayesian source unmixing, loadograph pathway separation, and geospatial connectivity analysis—to apportion nitrate loading from three sources (soil, fertilizer, and manure) across three pathways (quick, intermediate, and slow), resulting in nine possible source‐pathway couplings (soil‐quick, soil‐intermediate, …, manure‐slow). We apply this model to a 30 month elemental (NO3) and isotopic (δ15N and δ18O) nitrate data set from a karst watershed in Kentucky, USA. Modeling results indicate that—of the nine possible source‐pathway couplings—nearly 60% of nitrate export is facilitated by just three: fertilizer‐quick (16.4%), manure‐intermediate (15.4%), and soil‐slow (27.2%). Further, we reinforce the need to explicitly consider heterogeneity in source‐pathway connectivity as homogeneous assumptions lead to erroneous inferences. The applicability of the model, its input requirements, and transferability to other sites is discussed. Lastly, we simulated two land management scenarios (field buffers and septic repair) and demonstrate how optimal transport can be used to test nutrient reduction strategies.

     
    more » « less
  3. Abstract

    Understanding the physics of nitrate contamination in surface and subsurface water is vital for mitigating downstream water quality impairment. Though high frequency sensor data have become readily available and computational models more accessible, the integration of these two methods for improved prediction is underdeveloped. The objective of this study was to utilize high‐frequency data to advance our understanding and model representation of nitrate transport for an agricultural karst spring in Kentucky, USA. We collected 2‐years of 15‐min nitrate and specific conductance data and analyzed source‐timing dynamics across dozens of events to develop a conceptual model for nitrate hysteresis in karst. Thereafter, we used the sensing data, specifically discharge‐concentration indices, to constrain modeled nitrate prediction bounds as well as the uncertainty of hydrologic and nitrogen processes, such as soil percolation and biogeochemical transformation. Observed nitrate hysteresis behavior at the spring was complex and included clockwise (n = 11), counterclockwise (n = 13), and figure‐eight (n = 10) shapes, which contrasts with surface systems that are often dominated by a single hysteresis shape. Sensing results highlight the importance of antecedent connectivity to nitrate‐rich storages in determining the timing of nitrate delivery to the spring. After integrating hysteresis analysis into our numerical model evaluation, simulated nitrate prediction bounds were reduced by 43 ± 12% and parameter uncertainty by 36 ± 20%. Taken together, this study suggests that discharge‐concentration indices derived from high‐frequency sensor data can be successfully integrated into numerical models to improve process representation and reduce modeled uncertainty.

     
    more » « less
  4. Abstract

    Nitrogen removal rates can vary with time, space, and external environmental drivers, but are underreported for karst environments. We carried out a multi‐year study of a karst conduit where we: (a) measured inputs and outputs of sediment nitrogen (SN and δ15NSed) and nitrate (NO3and δ15NNO3); (b) developed, calibrated, and applied a numerical model of nitrogen physics and biogeochemistry; and (c) forecasted the impacts of climate and land use changes on nitrate removal and export. Data results from conduit inputs (SN = 0.43% ± 0.07%, δ15NSed = 5.07‰ ± 1.01‰) and outputs (SN = 0.36% ± 0.09%, δ15NSed = 6.45‰ ± 0.71‰) indicate net‐mineralization of SN and increase of δ15NSed(p < 10−2). However, δ15NSedincrease cannot be explained by SN mineralization alone and is instead accompanied by immobilization of isotopically heavier mineral nitrogen (δ15NNO3 = 11.25‰ ± 6.96‰). Modeled SN and δ15NSedsub‐routines provided a boundary condition for DIN simulation and improved NO3model performance (from NSE = 0.06 to NSE = 0.68). Modeled spatial zones of removal occur in close proximity to conduit entrances, where deposition of labile organic matter promotes a three‐fold increase in denitrification (∼60 mg N m−2 d−1). Modeled temporal periods of removal occur during the dry‐season where longer residence times cause up to 90% removal of NO3inputs. Projected effects of environmental drivers suggest an increase in denitrification (+14.1%); however, this removal is largely offset by greater nitrate soil leaching (+28.1%) from wetter regional climate. Results suggest that conduits underlying mature karst terrain experience spatiotemporal removal gradients, which are modulated by solute and sediment delivery.

     
    more » « less
  5. Abstract

    Nitrous oxide (N2O) is a potent ozone‐depleting greenhouse gas produced by incomplete denitrification. Recent works on riverine N2O emissions focus mainly on contributions from in‐channel, benthic, and fluvial hyporheic environments under assumptions of steady‐state conditions and homogeneous sediment hydraulic conductivity (K). However, riparian floodplains are also a potentially important N2O source characterized by complex sediment heterogeneity and dynamic surface and groundwater interactions. We use numerical flow and reactive transport models to investigate the influence of complex sedimentary architecture and high‐flow events (e.g., storms) on N2O production. We interpret the correlation between flow and solute fields with the flow topological Okubo‐Weiss metric (OW) and the scalar dissipation rate weighted by soil organic matter (OM) fraction and soil saturation. We model a heterogeneous riparian floodplain based on field observations from the Theis Environmental Monitoring and Modeling Site, Ohio, USA. N2O production is greatest within intermediate‐Ksediments (e.g., sands) where denitrification rates are highest, and emissions increase by more than an order of magnitude during storms. Sensitivity analysis reveals that the denitrification rate is most influential for N2O flux, accounting for nearly 46% of the variance in production rates. Denitrification rates adapt to spatial changes in the flow topology (measured by OW) related to sediment heterogeneity and are strongly influenced by subsurface mixing dynamics. Mixing is greatest in shear strain‐dominated regions, while vorticity promotes OM dissolution and prolongs residence times. Accurate lithologic representation is imperative for characterizing subsurface N2O production dynamics, especially given growing concern regarding climate change driven hydrologic changes within watersheds worldwide.

     
    more » « less