skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The competitive advantage of a constitutive CAM species over a C 4 grass species under drought and CO 2 enrichment
Abstract Plants with crassulacean acid metabolism (CAM) are increasing in distribution and abundance in drylands worldwide, but the underlying drivers remain unknown. We investigate the impacts of extreme drought and CO2enrichment on the competitive relationships between seedlings ofCylindropuntia imbricata(CAM species) andBouteloua eriopoda(C4grass), which coexist in semiarid ecosystems across the Southwestern United States. Our experiments under altered water and CO2water conditions show thatC. imbricatapositively responded to CO2enrichment under extreme drought conditions, whileB. eriopodadeclined from drought stress and did not recover after the drought ended. Conversely, in well‐watered conditionsB. eriopodahad a strong competitive advantage onC. imbricatasuch that the photosynthetic rate and biomass (per individual) ofC. imbricatagrown withB. eriopodawere lower relative to when growing alone. A meta‐analysis examining multiple plant families across global drylands shows a positive response of CAM photosynthesis and productivity to CO2enrichment. Collectively, our results suggest that under drought and elevated CO2concentrations, projected with climate change, the competitive advantage of plant functional groups may shift and the dominance of CAM plants may increase in semiarid ecosystems.  more » « less
Award ID(s):
1655499 1748133 1440478
PAR ID:
10458928
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
10
Issue:
5
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Interactions between plants and soil microbes influence plant nutrient transformations, including nitrogen (N) fixation, nutrient mineralization, and resource exchanges through fungal networks. Physical disturbances to soils can disrupt soil microbes and associated processes that support plant and microbial productivity. In low resource drylands, biological soil crusts (“biocrusts”) occupy surface soils and house key autotrophic and diazotrophic bacteria, non‐vascular plants, or lichens. Interactions among biocrusts, plants, and fungal networks between them are hypothesized to drive carbon and nutrient dynamics; however, comparisons across ecosystems are needed to generalize how soil disturbances alter microbial communities and their contributions to N pools and transformations. To evaluate linkages among plants, fungi, and biocrusts, we disturbed all unvegetated surfaces with human foot trampling twice yearly from 2013–2019 in dry conditions in cyanobacteria‐dominated biocrusts in the Chihuahuan Desert grassland and shrubland ecosystems. After 5 years, disturbance decreased the abundances of cyanobacteria (especiallyMicrocoleus steenstrupiiclade) and N‐fixers (Scytonemasp., andSchizothrixsp.) by >77% and chlorophyllaby up to 55% but, conversely, increased soil fungal abundance by 50% compared with controls. Responses of root‐associated fungi differed between the two dominant plant species and ecosystem types, with a maximum of 80% more aseptate hyphae in disturbed than in control plots. Although disturbance did not affect15N tracer transfer from biocrusts to the dominant grass,Bouteloua eriopoda, disturbance increased available soil N by 65% in the shrubland, and decreased leaf N ofB. eriopodaby up to 16%, suggesting that, although rapid N transfer during peak production was not affected by disturbance, over the long‐term plant nutrient content was disrupted. Altogether, the shrubland may be more resilient to detrimental changes due to disturbance than grassland, and these results demonstrated that disturbances to soil microbial communities have the potential to cause substantial changes in N pools by reducing and reordering biocrust taxa. 
    more » « less
  2. Abstract PremiseClimate change poses challenges to grasslands, including those of the North American Great Plains Region, where shifts in species distributions and fire dynamics are expected. Our present analysis focuses on remaining grasslands within this largely developed and agricultural region. The differential responses of C4and C3grass species to future climate conditions, particularly in habitat suitability and flammability, are critical for understanding ecosystem changes. MethodsWe used species distribution models to predict shifts in habitat suitability for 37 grass species under future climate scenarios and assessed flammability traits in a free‐air CO2‐enrichment study, focusing on species' physiological responses to elevated CO2, warming, and drought. ResultsOur models predicted that C4species will retain higher habitat suitability, while C3species will decline. Leaf‐level flammability analysis showed that species with higher water‐use efficiency under elevated CO will have lower flammability than under non‐elevated, potentially decreasing the predicted rate of fire spread when such species dominate. In contrast, species with higher growth rates but lower water‐use efficiency may be more flammable. Species‐specific responses varied within functional types. Anticipated shifts in species distributions suggest C4species will become more dominant, potentially altering competitive dynamics and reducing C3diversity. Changes in flammability under future conditions are expected to influence fire regimes, with a predicted decrease in mean community rate of spread due to the dominance of less‐flammable C4species. ConclusionsThese findings highlight the need for adaptive fire management and conservation strategies to maintain biodiversity and ecosystem function in North American grasslands under climate change. 
    more » « less
  3. Abstract Uncertainty about long‐term leaf‐level responses to atmospheric CO2rise is a major knowledge gap that exists because of limited empirical data. Thus, it remains unclear how responses of leaf gas exchange to elevated CO2(eCO2) vary among plant species and functional groups, or across different levels of nutrient supply, and whether they persist over time for long‐lived perennials. Here, we report the effects of eCO2on rates of net photosynthesis and stomatal conductance in 14 perennial grassland species from four functional groups over two decades in a Minnesota Free‐Air CO2Enrichment experiment, BioCON. Monocultures of species belonging to C3grasses, C4grasses, forbs, and legumes were exposed to two levels of CO2and nitrogen supply in factorial combinations over 21 years. eCO2increased photosynthesis by 12.9% on average in C3species, substantially less than model predictions of instantaneous responses based on physiological theory and results of other studies, even those spanning multiple years. Acclimation of photosynthesis to eCO2was observed beginning in the first year and did not strengthen through time. Yet, contrary to expectations, the response of photosynthesis to eCO2was not enhanced by increased nitrogen supply. Differences in responses among herbaceous plant functional groups were modest, with legumes responding the most and C4grasses the least as expected, but did not further diverge over time. Leaf‐level water‐use efficiency increased by 50% under eCO2primarily because of reduced stomatal conductance. Our results imply that enhanced nitrogen supply will not necessarily diminish photosynthetic acclimation to eCO2in nitrogen‐limited systems, and that significant and consistent declines in stomatal conductance and increases in water‐use efficiency under eCO2may allow plants to better withstand drought. 
    more » « less
  4. Abstract AimsGrassland-to-shrubland transition is a common form of land degradation in drylands worldwide. It is often attributed to changes in disturbance regimes, particularly overgrazing. A myriad of direct and indirect effects (e.g., accelerated soil erosion) of grazing may favor shrubs over grasses, but their relative importance is unclear. We tested the hypothesis that topsoil “winnowing” by wind erosion would differentially affect grass and shrub seedling establishment to promote shrub recruitment over that of grass. MethodsWe monitored germination and seedling growth of contrasting perennial grass (Bouteloua eriopoda,Sporobolus airoides, andAristida purpurea) and shrub (Prosopis glandulosa,Atriplex canescens, andLarrea tridentata) functional groups on field-collected non-winnowed and winnowed soils under well-watered greenhouse conditions. ResultsNon-winnowed soils were finer-textured and had higher nutrient contents than winnowed soils, but based on desorption curves, winnowed soils had more plant-available moisture. Contrary to expectations, seed germination and seedling growth on winnowed and non-winnowed soils were comparable within a given species. The N2-fixing deciduous shrubP. glandulosawas first to emerge and complete germination, and had the greatest biomass accumulation of all species. ConclusionsGermination and early seedling growth of grasses and shrubs on winnowed soils were not adversely nor differentially affected comparing with that observed on non-winnowed soils under well-watered greenhouse conditions. Early germination and rapid growth may giveP. glandulosaa competitive advantage over grasses and other shrub species at the establishment stage in grazed grasslands. Field establishment experiments are needed to confirm our findings in these controlled environment trials. 
    more » « less
  5. Whether the terrestrial biosphere will continue to act as a net carbon (C) sink in the face of multiple global changes is questionable. A key uncertainty is whether increases in plant C fixation under elevated carbon dioxide (CO2) will translate into decades-long C storage and whether this depends on other concurrently changing factors. We investigated how manipulations of CO2, soil nitrogen (N) supply, and plant species richness influenced total ecosystem (plant + soil to 60 cm) C storage over 19 y in a free-air CO2enrichment grassland experiment (BioCON) in Minnesota. On average, after 19 y of treatments, increasing species richness from 1 to 4, 9, or 16 enhanced total ecosystem C storage by 22 to 32%, whereas N addition of 4 g N m−2⋅ y−1and elevated CO2of +180 ppm had only modest effects (increasing C stores by less than 5%). While all treatments increased net primary productivity, only increasing species richness enhanced net primary productivity sufficiently to more than offset enhanced C losses and substantially increase ecosystem C pools. Effects of the three global change treatments were generally additive, and we did not observe any interactions between CO2and N. Overall, our results call into question whether elevated CO2will increase the soil C sink in grassland ecosystems, helping to slow climate change, and suggest that losses of biodiversity may influence C storage as much as or more than increasing CO2or high rates of N deposition in perennial grassland systems. 
    more » « less