The physics of solar flares occurring on the Sun is highly complex and far from fully understood. However, observations show that solar eruptions are associated with the intense kilogauss fields of active regions, where free energies are stored with field-aligned electric currents. With the advent of high-quality data sources such as the Geostationary Operational Environmental Satellites (GOES) and Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI), recent works on solar flare forecasting have been focusing on data-driven methods. In particular, black box machine learning and deep learning models are increasingly being adopted in which underlying data structures are not modeled explicitly. If the active regions indeed follow the same laws of physics, similar patterns should be shared among them, reflected by the observations. Yet, these black box models currently used in the literature do not explicitly characterize the heterogeneous nature of the solar flare data within and between active regions. In this paper, we propose two finite mixture models designed to capture the heterogeneous patterns of active regions and their associated solar flare events. With extensive numerical studies, we demonstrate the usefulness of our proposed method for both resolving the sample imbalance issue and modeling the heterogeneity for rare energetic solar flare events.
In this paper we present several methods to identify precursors that show great promise for early predictions of solar flare events. A data preprocessing pipeline is built to extract useful data from multiple sources, Geostationary Operational Environmental Satellites and Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI), to prepare inputs for machine learning algorithms. Two classification models are presented: classification of flares from quiet times for active regions and classification of strong versus weak flare events. We adopt deep learning algorithms to capture both spatial and temporal information from HMI magnetogram data. Effective feature extraction and feature selection with raw magnetogram data using deep learning and statistical algorithms enable us to train classification models to achieve almost as good performance as using active region parameters provided in HMI/Space‐Weather HMI‐Active Region Patch (SHARP) data files. Case studies show a significant increase in the prediction score around 20 hr before strong solar flare events.
more » « less- NSF-PAR ID:
- 10458929
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 17
- Issue:
- 10
- ISSN:
- 1542-7390
- Page Range / eLocation ID:
- p. 1404-1426
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We develop a mixed long short‐term memory (LSTM) regression model to predict the maximum solar flare intensity within a 24‐hr time window 0–24, 6–30, 12–36, and 24–48 hr ahead of time using 6, 12, 24, and 48 hr of data (predictors) for each Helioseismic and Magnetic Imager (HMI) Active Region Patch (HARP). The model makes use of (1) the Space‐Weather HMI Active Region Patch (SHARP) parameters as predictors and (2) the exact flare intensities instead of class labels recorded in the Geostationary Operational Environmental Satellites (GOES) data set, which serves as the source of the response variables. Compared to solar flare classification, the model offers us more detailed information about the exact maximum flux level, that is, intensity, for each occurrence of a flare. We also consider classification models built on top of the regression model and obtain better results in solar flare classifications as compared to Chen et al. (2019,
https://doi.org/10.1029/2019SW002214 ). Our results suggest that the most efficient time period for predicting the solar activity is within 24 hr before the prediction time using the SHARP parameters and the LSTM model. -
Abstract Solar flare prediction plays an important role in understanding and forecasting space weather. The main goal of the Helioseismic and Magnetic Imager (HMI), one of the instruments on NASA’s Solar Dynamics Observatory, is to study the origin of solar variability and characterize the Sun’s magnetic activity. HMI provides continuous full-disk observations of the solar vector magnetic field with high cadence data that lead to reliable predictive capability; yet, solar flare prediction effort utilizing these data is still limited. In this paper, we present a machine-learning-as-a-service (MLaaS) framework, called DeepSun, for predicting solar flares on the web based on HMI’s data products. Specifically, we construct training data by utilizing the physical parameters provided by the Space-weather HMI Active Region Patch (SHARP) and categorize solar flares into four classes, namely B, C, M and X, according to the X-ray flare catalogs available at the National Centers for Environmental Information (NCEI). Thus, the solar flare prediction problem at hand is essentially a multi-class (i.e., four-class) classification problem. The DeepSun system employs several machine learning algorithms to tackle this multi-class prediction problem and provides an application programming interface (API) for remote programming users. To our knowledge, DeepSun is the first MLaaS tool capable of predicting solar flares through the internet.more » « less
-
Supervised Machine Learning (ML) models for solar flare prediction rely on accurate labels for a given input data set, commonly obtained from the GOES/XRS X-ray flare catalog. With increasing interest in utilizing ultraviolet (UV) and extreme ultraviolet (EUV) image data as input to these models, we seek to understand if flaring activity can be defined and quantified using EUV data alone. This would allow us to move away from the GOES single pixel measurement definition of flares and use the same data we use for flare prediction for label creation. In this work, we present a Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA)-based flare catalog covering flare of GOES X-ray magnitudes C, M and X from 2010 to 2017. We use active region (AR) cutouts of full disk AIA images to match the corresponding SDO/Helioseismic and Magnetic Imager (HMI) SHARPS (Space weather HMI Active Region Patches) that have been extensively used in ML flare prediction studies, thus allowing for labeling of AR number as well as flare magnitude and timing. Flare start, peak, and end times are defined using a peak-finding algorithm on AIA time series data obtained by summing the intensity across the AIA cutouts. An extremely randomized trees (ERT) regression model is used to map SDO/AIA flare magnitudes to GOES X-ray magnitude, achieving a low-variance regression. We find an accurate overlap on 85% of M/X flares between our resulting AIA catalog and the GOES flare catalog. However, we also discover a number of large flares unrecorded or mislabeled in the GOES catalog.
-
Abstract We introduce and make openly accessible a comprehensive, multivariate time series (MVTS) dataset extracted from solar photospheric vector magnetograms in Spaceweather HMI Active Region Patch (SHARP) series. Our dataset also includes a cross-checked NOAA solar flare catalog that immediately facilitates solar flare prediction efforts. We discuss methods used for data collection, cleaning and pre-processing of the solar active region and flare data, and we further describe a novel data integration and sampling methodology. Our dataset covers 4,098 MVTS data collections from active regions occurring between May 2010 and December 2018, includes 51 flare-predictive parameters, and integrates over 10,000 flare reports. Potential directions toward expansion of the time series, either “horizontally” – by adding more prediction-specific parameters, or “vertically” – by generalizing flare into integrated solar eruption prediction, are also explained. The immediate tasks enabled by the disseminated dataset include: optimization of solar flare prediction and detailed investigation for elusive flare predictors or precursors, with both operational (research-to-operations), and basic research (operations-to-research) benefits potentially following in the future.