skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Variations of Equatorial Shear, Stratification, and Turbulence Within a Tropical Instability Wave Cycle
Abstract

Equatorial Internal Wave Experiment observations at 0°, 140°W from October 2008 to February 2009 captured modulations of shear, stratification, and turbulence above the Equatorial Undercurrent by a series of tropical instability waves (TIWs). Analyzing these observations in terms of a four‐phase TIW cycle, we found that shear and stratification within the deep‐cycle layer being weakest in the middle of the N‐S phase (transition from northward to southward flow) and strongest in the late S phase (southward flow) and the early S‐N phase (transition from southward to northward flow). Turbulence was modulated but showed less dependence on the TIW cycle. The vertical diffusivity (KT) was largest during the N (northward flow) and N‐S phases, when stratification was weak, despite weak shear, and was smallest from the late S phase to the S‐N phase, when stratification was strong, despite strong shear. This tendency was less clear in turbulent heat flux because vertical temperature gradients were small at times whenKTwas large, and large whenKTwas small. We investigated the dynamics of shear and stratification variations within the TIW cycle by using an ocean general circulation model forced with observed winds. The model successfully reproduced the observed strong shear and stratification in the S phase, except for a small phase difference. The strong shear is explained by vortex stretching by TIWs. The strong stratification is explained by meridional and vertical advection.

 
more » « less
NSF-PAR ID:
10458939
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
124
Issue:
3
ISSN:
2169-9275
Page Range / eLocation ID:
p. 1858-1875
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tropical instability waves (TIWs) are identified in three multiyear equatorial mooring records in Pacific and Atlantic cold tongues to evaluate how TIWs modulate turbulence. At 0°, 140°W in the Pacific, TIWs are present in 43% of observations, and are associated with elevated vertical shear and a 40% average increase in turbulence dissipation rates (ϵ) above the Equatorial Undercurrent. Zonal shear is greatest when currents are southward while buoyancy is greatest later in the TIW cycle, leading to greater potential for instability and elevated turbulence before and during the southward flow maximum. This suggests that TIW vortex stretching contributes to enhanced shear and turbulence. In the Atlantic, TIWs are found in 38% of observations at 0°, 23°W and 16% of observations at 0°, 10°W. TIWs at 23°W increaseϵby 18% where turbulence is likely modulated by vortex stretching and, near the surface, by the seasonally wind‐forced equatorial roll. At 23°W and 140°W, TIWs with strong meridional velocity fluctuations are associated with the strongest turbulence. Contributions of seasonal variations are removed by considering only periods when TIWs are climatically active. During these periods, mean values ofϵin the presence of strong TIWs are elevated by 61% at 140°W, 29% at 23°W, and 36% at 10°W. At 10°W, where our identification scheme may include wind‐forced oscillations in the same frequency band, increases inϵare not consistent in the presence of TIWs and do not contribute significantly to multiyear averages.

     
    more » « less
  2. Abstract

    Based on velocity data from a long‐term moored observatory located at 0°N, 23°W we present evidence of a vertical asymmetry during the intraseasonal maxima of northward and southward upper‐ocean flow in the equatorial Atlantic Ocean. Periods of northward flow are characterized by a meridional velocity maximum close to the surface, while southward phases show a subsurface velocity maximum at about 40 m. We show that the observed asymmetry is caused by the local winds. Southerly wind stress at the equator drives northward flow near the surface and southward flow below that is superimposed on the Tropical Instability Wave (TIW) velocity field. This wind‐driven overturning cell, known as the Equatorial Roll, shows a distinct seasonal cycle linked to the seasonality of the meridional component of the south‐easterly trade winds. The superposition of vertical shear of the Equatorial Roll and TIWs causes asymmetric mixing during northward and southward TIW phases.

     
    more » « less
  3. Abstract

    At the University of Michigan Biological Station during the 2016 AMOS field campaign, isoprene concentrations typically peak in the early afternoon (around 15:00 local time, LT) under well‐mixed conditions. However, an end‐of‐day peak (around 21:00 LT) occurs on 23% of the campaign days, followed by a rapid removal (from 21:00–22:00 LT) at rate of 0.57 hr−1during the day‐to‐night transition period. During the end‐of‐day peak, in‐canopy isoprene concentrations increase by 77% (from 3.5 to 6.2 ppbv) on average. Stratification and weak winds (<3.4 m s−1at 46 m) significantly suppress turbulent exchanges between in‐ and above‐canopy, leading to accumulation of isoprene emitted at dusk. A critical standard deviation of the vertical velocity (σw) of 0.14, 0.2, and 0.29 m s−1is identified to detect the end‐of‐day peak for the height of 13, 21, and 34 m, respectively. In 85% of the end‐of‐day cases, the wind speed increases above 2.5 m s−1after the peak along with a shift in wind direction, and turbulence is reestablished. Therefore, the wind speed of 2.5 m s−1is considered as the threshold point where turbulence switches from being independent of wind speed to dependent on wind speed. The reinstated turbulence accounts for 80% of the subsequent isoprene removal with the remaining 20% explained by chemical reactions with hydroxyl radicals, ozone, and nitrate radicals. Observed isoprene fluxes do not support the argument that the end‐of‐day peak is reduced by vertical turbulent mixing, and we hypothesize that horizontal advection may play a role.

     
    more » « less
  4. Abstract

    In this study, we report on turbulent mixing observed during the annual stratification cycle in the hypolimnetic waters of Lake Michigan (USA), highlighting stratified, convective, and transitional mixing periods. Measurements were collected using a combination of moored instruments and microstructure profiles. Observations during the stratified summer showed a shallow, wind‐driven surface mixed layer (SML) with locally elevated dissipation rates in the thermocline () potentially associated with internal wave shear. Below the thermocline, turbulence was weak () and buoyancy‐suppressed (< 8.5), with low hypolimnetic mixing rates () limiting benthic particle delivery. During the convective winter period, a diurnal cycle of radiative convection was observed over each day of measurement, where temperature overturns were directly correlated with elevated turbulence levels throughout the water column (;). A transitional mixing period was observed for spring conditions when surface temperatures were near the temperature of maximum density (TMD3.98) and the water column began to stably stratify. While small temperature gradients allowed strong mixing over the transitional period (), hypolimnetic velocity shear was overwhelmed by weakly stable stratification (;), limiting the development of the SML. These results highlight the importance of radiative convection for breaking down weak hypolimnetic stratification and driving energetic, full water column mixing during a substantial portion of the year (>100 days at our sample site). Ongoing surface water warming in the Laurentian Great Lakes is significantly reducing the annual impact of convective mixing, with important consequences for nutrient cycling, primary production, and benthic‐pelagic coupling.

     
    more » « less
  5. Abstract

    The tropical instability waves (TIWs) in the eastern tropical Pacific have generally been considered as surface‐intensified structures resembling the first baroclinic mode. Here, we report on the existence of subsurface‐intensified TIWs on the equator. These TIWs are primarily manifested in zonal velocities, inducing maximum velocity oscillations at 70–90 m depth with amplitudes of 0.1–0.2 m/s and periods of 5–20 days. They account for ~20% of the variance at 5‐ to 30‐day periods, with another ~50% being contributed by the surface‐intensified TIWs. These waves are most significant during the TIW seasons; they are energized in part by barotropic instabilities and usually last for 3–7 months. Via interacting with the mean flow, they can induce strong out‐of‐phase shear changes between ~50‐m depth and just above the Equatorial Undercurrent core and may lead to complex diapycnal mixing structures. Their horizontal structures, generation mechanism(s), and large‐scale impacts remain to be disclosed.

     
    more » « less