skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Light exposure along particle flowpaths in large rivers
Abstract

Sunlight is a critical resource in aquatic systems driving photosynthesis, photodegradation of organic matter and contaminants, animal behavior, and the activity of human pathogens. In rivers, solutes, materials, and organisms are turbulently mixed across the water column during downstream transport and exposed to highly variable sunlight. However, there are no measurements of suspended particles' sunlight exposure during downstream transport to characterize this variability, and it is unclear if current measurement approaches and optical theory capture the light exposure of suspended particles. We deployed neutrally buoyant drifters and stationary buoys in the Upper Mississippi (WI, U.S.A.) and Neuse Rivers (NC, U.S.A.) to measure underwater sunlight from the perspective of suspended particles. In our study sites, underwater sunlight varied more along flowpaths measured by drifters than over time measured by fixed‐site buoys; sunlight exposure along flowpaths was dominated by bursts of light (sunflecks) that accounted for 62–99% of the cumulative sunlight exposure; and modeled sunlight exposure using optical theory was consistently 56–1700% higher than measured sunlight exposure along flowpaths. Our results suggested that suspended particles in the study reaches experienced darker conditions than predicted and have important implications for how to quantify underwater sunlight in rivers.

 
more » « less
NSF-PAR ID:
10458963
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
65
Issue:
1
ISSN:
0024-3590
Page Range / eLocation ID:
p. 128-142
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vertical motion is an important driver of sunlight exposure in aquatic environments, shaping the growth and fate of materials and organisms. We derive a simple model accounting for turbulent depth fluctuations of particles to predict the depth that contributes the most sunlight exposure (effective depth) as well as the single depth that, if measured at one place over time, produces the same total sunlight exposure as a moving particle (functional depth). Field measurements of light and depth in rivers using neutrally buoyant drifters and buoys validate our model. Effective depth varied from 0.1 to 1.5 m below the water surface and was ~ 30% of the overall water depth on average. Functional depth varied from 0.67 to 2.3 m and was ~ 50% of the overall water depth on average. Functional and effective depth are physically based concepts incorporating turbulent motion, spatial variability, and water clarity offering new approaches to characterize light exposure in aquatic environments.

     
    more » « less
  2. There are challenges in monitoring and managing water quality due to spatial and temporal heterogeneity in contaminant sources, transport, and transformations. We demonstrate the importance of longitudinal stream synoptic (LSS) monitoring, which can track combinations of water quality parameters along flowpaths across space and time. Specifically, we analyze longitudinal patterns of chemical mixtures of carbon, nutrients, greenhouse gasses, salts, and metals concentrations along 10 flowpaths draining 1,765 km 2 of the Chesapeake Bay region. These 10 longitudinal stream flowpaths are drained by watersheds experiencing either urban degradation, forest and wetland conservation, or stream and floodplain restoration. Along the 10 longitudinal stream flowpaths, we monitored over 300 total sampling sites along a combined stream length of 337 km. Synoptic monitoring along longitudinal flowpaths revealed: (1) increasing, decreasing, piecewise, or no trends and transitions in water quality with increasing distance downstream, which provide insights into water quality processes along flowpaths; (2) longitudinal trends and transitions in water quality along flowpaths can be quantified and compared using simple linear and non-linear statistical relationships with distance downstream and/or land use/land cover attributes, (3) attenuation and transformation of chemical cocktails along flowpaths depend on: spatial scales, pollution sources, and transitions in land use and management, hydrology, and restoration. We compared our LSS patterns with others from the global literature to synthesize a typology of longitudinal water quality trends and transitions in streams and rivers based on hydrological, biological, and geochemical processes. Applications of LSS monitoring along flowpaths from our results and the literature reveal: (1) if there are shifts in pollution sources, trends, and transitions along flowpaths, (2) which pollution sources can spread further downstream to sensitive receiving waters such as drinking water supplies and coastal zones, and (3) if transitions in land use, conservation, management, or restoration can attenuate downstream transport of pollution sources. Our typology of longitudinal water quality responses along flowpaths combines many observations across suites of chemicals that can follow predictable patterns based on watershed characteristics. Our typology of longitudinal water quality responses also provides a foundation for future studies, watershed assessments, evaluating watershed management and stream restoration, and comparing watershed responses to non-point and point pollution sources along streams and rivers. LSS monitoring, which integrates both spatial and temporal dimensions and considers multiple contaminants together (a chemical cocktail approach), can be a comprehensive strategy for tracking sources, fate, and transport of pollutants along stream flowpaths and making comparisons of water quality patterns across different watersheds and regions. 
    more » « less
  3. Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed “chemical cocktails”, in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (i.e., road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e.,permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g.,Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers.

     
    more » « less
  4. Streams and rivers integrate and transport particulate organic carbon (POC) from an array of aquatic and terrestrial sources. Storm events greatly accelerate the transport of POC. The sequences by which individual POC inputs are mobilized and transported are not well-documented but are predicted to be temporally transient and spatially dependent because of changes in forcing functions, such as precipitation, discharge, and watershed morphology. In this study, the 3rd−4th order agricultural stream network, Clear Creek in Iowa, U.S.A., was sampled at a nested series of stations through storm events to determine how suspended POC changes over time and with distance downstream. Carbon and nitrogen stable isotope ratios were used to identify changes in POC. A temporal sequence of inputs was identified: in-channel algal production prior to heavy precipitation, row crop surface soils mobilized during peak precipitation, and material associated with the peak hydrograph that is hypothesized to be an integrated product from upstream. Tile drains delivered relatively 13 C- and 15 N-depleted particulate organic carbon that is a small contribution to the total POC inventory in the return to baseflow. The storm POC signal evolved with passage downstream, the principal transformation being the diminution of the early flush surface soil peak in response to a loss of connectivity between the hillslope and channel. Bank erosion is hypothesized to become increasingly important as the signal propagates downstream. The longitudinal evolution of the POC signal has implications for C-budgets associated with soil erosion and for interpreting the organic geochemical sedimentary record. 
    more » « less
  5. Abstract

    Plastic litter is accumulating in ecosystems worldwide. Rivers are a major source of plastic litter to oceans. However, rivers also retain and transform plastic pollution. While methods for calculating particle transport dynamics in rivers are well established, they are infrequently used to quantify the transport and retention of microplastics (i.e., particles < 5 mm) in flowing waters. Measurements of microplastic movement in rivers are needed for a greater understanding of the fate of plastic litter at watershed and global scales, and to inform pollution prevention strategies. Our objectives were to (1) quantify the abundance of microplastics within different river habitats and (2) adapt organic matter “spiraling” metrics to measure microplastic transport concurrent with fine particulate organic matter (FPOM). We quantified microplastic and FPOM abundance across urban river habitats (i.e., surface water, water column, benthos), and calculated downstream particle velocity, index of retention, turnover rate, and spiraling length for both particle types. Microplastic standing stock was assessed using a habitat‐specific approach, and estimates were scaled up to encompass the study reach. Spatial distribution of particles demonstrated that microplastics and FPOM were retained together, likely by hydrodynamic forces that facilitate particle sinking or resuspension. Microplastic particles had a higher downstream particle velocity and lower index of retention relative to FPOM, suggesting that microplastics were retained to a lesser degree than FPOM in the study reaches. Microplastics also showed lower turnover rates and longer spiraling lengths relative to FPOM, attributed to the slow rates of plastic degradation. Thus, rivers are less retentive of microplastics than FPOM, although both particles are retained in similar locations. Because microplastics are resistant to degradation, individual particles can be transported longer distances prior to mineralization than FPOM, making it likely that microplastic particles will encounter larger bodies of water and interact with various aquatic biota in the process. These empirical assessments of particle transport will be valuable for understanding the fate and transformation of microplastic particles in freshwater resources and ultimately contribute to the refinement of global plastic budgets.

     
    more » « less