skip to main content


This content will become publicly available on July 20, 2024

Title: Dynamic subcanopy leaf traits drive resistance of net primary production across a disturbance severity gradient
Across the globe, the forest carbon sink is increasingly vulnerable to an expanding array of low- to moderate-severity disturbances. However, some forest ecosystems exhibit functional resistance (i.e., the capacity of ecosystems to continue functioning as usual) following disturbances such as extreme weather events and insect or fungal pathogen outbreaks. Unlike severe disturbances (e.g., stand-replacing wildfires), moderate severity disturbances do not always result in near-term declines in forest production because of the potential for compensatory growth, including enhanced subcanopy production. Community-wide shifts in subcanopy plant functional traits, prompted by disturbance-driven environmental change, may play a key mechanistic role in resisting declines in net primary production (NPP) up to thresholds of canopy loss. However, the temporal dynamics of these shifts, as well as the upper limits of disturbance for which subcanopy production can compensate, remain poorly characterized. In this study, we leverage a 4-year dataset from an experimental forest disturbance in northern Michigan to assess subcanopy community trait shifts as well as their utility in predicting ecosystem NPP resistance across a wide range of implemented disturbance severities. Through mechanical girdling of stems, we achieved a gradient of severity from 0% (i.e., control) to 45, 65, and 85% targeted gross canopy defoliation, replicated across four landscape ecosystems broadly representative of the Upper Great Lakes ecoregion. We found that three of four examined subcanopy community weighted mean (CWM) traits including leaf photosynthetic rate ( p = 0.04), stomatal conductance ( p = 0.07), and the red edge normalized difference vegetation index ( p < 0.0001) shifted rapidly following disturbance but before widespread changes in subcanopy light environment triggered by canopy tree mortality. Surprisingly, stimulated subcanopy production fully compensated for upper canopy losses across our gradient of experimental severities, achieving complete resistance (i.e., no significant interannual differences from control) of whole ecosystem NPP even in the 85% disturbance treatment. Additionally, we identified a probable mechanistic switch from nutrient-driven to light-driven trait shifts as disturbance progressed. Our findings suggest that remotely sensed traits such as the red edge normalized difference vegetation index (reNDVI) could be particularly sensitive and robust predictors of production response to disturbance, even across compositionally diverse forests. The potential of leaf spectral indices to predict post-disturbance functional resistance is promising given the capabilities of airborne to satellite remote sensing. We conclude that dynamic functional trait shifts following disturbance can be used to predict production response across a wide range of disturbance severities.  more » « less
Award ID(s):
1655095
NSF-PAR ID:
10459044
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Forests and Global Change
Volume:
6
ISSN:
2624-893X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. *Differential disturbance severity effects on forest vegetation structure, species diversity, and net primary production (NPP) have been long theorized and observed. Here, we examined these factors concurrently to explore the potential for a mechanistic pathway linking disturbance severity, changes in light environment, leaf functional response, and wood NPP in a temperate hardwood forest. *Using a suite of measurements spanning an experimental gradient of tree mortality, we evaluated the direction and magnitude of change in vegetation structural and diversity indexes in relation to wood NPP. Informed by prior observations, we hypothesized that forest structural and species diversity changes and wood NPP would exhibit either a linear, unimodal, or threshold response in relation to disturbance severity. We expected increasing disturbance severity would progressively shift subcanopy light availability and leaf traits, thereby coupling structural and species diversity changes with primary production. *Linear or unimodal changes in three of four vegetation structural indexes were observed across the gradient in disturbance severity. However, disturbance-related changes in vegetation structure were not consistently correlated with shifts in light environment, leaf traits, and wood NPP. Species diversity indexes did not change in response to rising disturbance severity. *We conclude that, in our study system, the sensitivity of wood NPP to rising disturbance severity is generally tied to changing vegetation structure but not species diversity. Changes in vegetation structure are inconsistently coupled with light environment and leaf traits, resulting in mixed support for our hypothesized cascade linking disturbance severity to wood NPP. 
    more » « less
  2. The capacity of forests to resist structural change and retain material legacies–the biotic and abiotic resources that persist through disturbance–is crucial to sustaining ecosystem function after disturbance. However, the role of forest structure as both a material legacy and feature supporting carbon (C) cycling stability following disturbance has not been widely investigated. We used a large-scale disturbance manipulation to ask whether legacies of lidar-derived canopy structures drive 3-year primary production responses to disturbance. As part of the Forest Resilience Threshold Experiment (FoRTE) in northern Michigan, USA we simulated phloem-disrupting disturbances producing a range of severities and affecting canopy trees of different sizes. We quantified the legacies of forest structure using two approaches: one measuring the change in structure and primary production from pre-to post-disturbance and the second estimating resistance as log transformed ratios of control and treatment values. We found that total aboveground wood net primary production (ANPP w ) was similar across disturbance severities as legacy trees rapidly increased rates of primary production. Experiment-wide, the disturbance had limited effects on change in mean structural complexity values; however, high variance underscored large differences in the magnitude and direction of complexity's response at the plot-scale. Plot-scale structural complexity, but not vegetation area index (VAI), resistance strongly predicted ANPP w resistance while temporal VAI and structural complexity changes did not. We conclude that the presence of material legacies in the form of forest structure may affect primary production stability following disturbance and that how legacies are quantified may affect the interpretation of disturbance response. 
    more » « less
  3. null (Ed.)
    Carbon (C) cycling processes are particularly dynamic following disturbance, with initial responses often indicative of longer-term change. In northern Michigan, USA, we initiated the Forest Resilience Threshold Experiment (FoRTE) to identify the processes that sustain or lead to the decline of C cycling rates across multiple levels (0, 45, 65 and 85% targeted gross leaf area index loss) of disturbance severity and, in response, to separate disturbance types preferentially targeting large or small diameter trees. Simulating the effects of boring insects, we stem girdled > 3600 trees below diameter at breast height (DBH), immediately and permanently disrupting the phloem. Weekly DBH measurements of girdled and otherwise healthy trees (n > 700) revealed small but significant increases in daily aboveground wood net primary production (ANPPw) in the 65 and 85% disturbance severity treatments that emerged six weeks after girdling. However, we observed minimal change in end-of-season leaf area index and no significant differences in annual ANPPw among disturbance severities or between disturbance types, suggesting continued C fixation by girdled trees sustained stand-scale wood production in the first growing season after disturbance. We hypothesized higher disturbance severities would favor the growth of early successional species but observed no significant difference between early and middle to late successional species’ contributions to ANPPw across the disturbance severity gradient. We conclude that ANPPw stability immediately following phloem disruption is dependent on the continued, but inevitably temporary, growth of phloem-disrupted trees. Our findings provide insight into the tree-to-ecosystem mechanisms supporting stand-scale wood production stability in the first growing season following a phloem-disrupting disturbance. 
    more » « less
  4. Abstract

    Moderate severity disturbances, those that do not result in stand replacement, play an essential role in ecosystem dynamics. Despite the prevalence of moderate severity disturbances and the significant impacts they impose on forest functioning, little is known about their effects on forest canopy structure and how these effects differ over time across a range of disturbance severities and disturbance types.

    Using longitudinal data from the National Ecological Observatory Network project, we assessed the effects of three moderate severity press disturbances (beech bark disease, hemlock woolly adelgid and emerald ash borer, which are characterized by continuous disturbance and sustained mortality) and three moderate severity pulse disturbances (spring cankerworm moth, spongy moth and ground fire, which are associated with discrete and relatively short mortalities) on temperate forest canopy structure in eastern US. We studied (1) how light detection and ranging (LiDAR)‐derived metrics of canopy structure change in response to disturbance and (2) whether initial canopy complexity offsets impact of disturbances on canopy structure over time. We used a mixed‐effects modelling framework which included a non‐linear term for time to represent changes in canopy structure caused by disturbance, and interactions between time and both disturbance intensity and initial canopy complexity.

    We discovered that high intensity of both press and pulse disturbances inhibited canopy height growth while low intensity pulse disturbances facilitated it. In addition, high intensity pulse disturbances facilitated increases in the complexity of the canopy over time. Concerning the impact of initial canopy complexity, we found that the initial canopy complexity of disturbed plots altered the effects of moderate disturbances, indicating potential resilience effects.

    Synthesis. This study used repeated measurements of LiDAR data to examine the effects of moderate disturbances on various dimensions of forest canopy structure, including height, openness, density and complexity. Our study indicates that both press and pulse disturbances can inhibit canopy height growth over time. However, while the impact of press disturbances on other dimensions of canopy structure could not be clearly detected, likely because of compensatory growth, the impact of pulse disturbances over time was more readily apparent using multi‐temporal LiDAR data. Furthermore, our findings suggest that canopy complexity might help to mitigate the impact of moderate disturbances on canopy structures over time. Overall, our research highlights the usefulness of multi‐temporal LiDAR data for assessing the structural changes in forest canopies caused by moderate severity disturbances.

     
    more » « less
  5. Abstract

    Forests dominate the global terrestrial carbon budget, but their ability to continue doing so in the face of a changing climate is uncertain. A key uncertainty is how forests will respond to (resistance) and recover from (resilience) rising levels of disturbance of varying intensities. This knowledge gap can optimally be addressed by integrating manipulative field experiments with ecophysiological modeling. We used the Ecosystem Demography‐2.2 (ED‐2.2) model to project carbon fluxes for a northern temperate deciduous forest subjected to a real‐world disturbance severity manipulation experiment. ED‐2.2 was run for 150 years, starting from near bare ground in 1900 (approximating the clear‐cut conditions at the time), and subjected to three disturbance treatments under an ensemble of climate conditions. Both disturbance severity and climate strongly affected carbon fluxes such as gross primary production (GPP), and interacted with one another. We then calculated resistance and resilience, two dimensions of ecosystem stability. Modeled GPP exhibited a two‐fold decrease in mean resistance across disturbance severities of 45%, 65%, and 85% mortality; conversely, resilience increased by a factor of two with increasing disturbance severity. This pattern held for net primary production and net ecosystem production, indicating a trade‐off in which greater initial declines were followed by faster recovery. Notably, however, heterotrophic respiration responded more slowly to disturbance, and it's highly variable response was affected by different drivers. This work provides insight into how future conditions might affect the functional stability of mature forests in this region under ongoing climate change and changing disturbance regimes.

     
    more » « less