The interplay between the mechanical properties of double-stranded and single-stranded DNA is a phenomenon that contributes to various genetic processes in which both types of DNA structures coexist. Highly stiff DNA duplexes can stretch single-stranded DNA (ssDNA) segments between the duplexes in a topologically constrained domain. To evaluate such an effect, we designed short DNA nanorings in which a DNA duplex with 160 bp is connected by a 30 nt single-stranded DNA segment. The stretching effect of the duplex in such a DNA construct can lead to the elongation of ssDNA, and this effect can be measured directly using atomic force microscopy (AFM) imaging. In AFM images of the nanorings, the ssDNA regions were identified, and the end-to-end distance of ssDNA was measured. The data revealed a stretching of the ssDNA segment with a median end-to-end distance which was 16% higher compared with the control. These data are in line with theoretical estimates of the stretching of ssDNA by the rigid DNA duplex holding the ssDNA segment within the nanoring construct. Time-lapse AFM data revealed substantial dynamics of the DNA rings, allowing for the formation of transient crossed nanoring formations with end-to-end distances as much as 30% larger than those of the longer-lived morphologies. The generated nanorings are an attractive model system for investigation of the effects of mechanical stretching of ssDNA on its biochemical properties, including interaction with proteins.
more »
« less
Weak tension accelerates hybridization and dehybridization of short oligonucleotides
Abstract The hybridization and dehybridization of DNA subject to tension is relevant to fundamental genetic processes and to the design of DNA-based mechanobiology assays. While strong tension accelerates DNA melting and decelerates DNA annealing, the effects of tension weaker than 5 pN are less clear. In this study, we developed a DNA bow assay, which uses the bending rigidity of double-stranded DNA (dsDNA) to exert weak tension on a single-stranded DNA (ssDNA) target in the range of 2–6 pN. Combining this assay with single-molecule FRET, we measured the hybridization and dehybridization kinetics between a 15 nt ssDNA under tension and a 8–9 nt oligonucleotide, and found that both the hybridization and dehybridization rates monotonically increase with tension for various nucleotide sequences tested. These findings suggest that the nucleated duplex in its transition state is more extended than the pure dsDNA or ssDNA counterpart. Based on coarse-grained oxDNA simulations, we propose that this increased extension of the transition state is due to steric repulsion between the unpaired ssDNA segments in close proximity to one another. Using linear force-extension relations verified by simulations of short DNA segments, we derived analytical equations for force-to-rate conversion that are in good agreement with our measurements.
more »
« less
- Award ID(s):
- 1806833
- PAR ID:
- 10459158
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 51
- Issue:
- 7
- ISSN:
- 0305-1048
- Page Range / eLocation ID:
- 3030 to 3040
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A sensitive label-free fluorescence assay for monitoring T4 polynucleotide kinase (T4 PNK) activity and inhibition was developed based on a coupled λ exonuclease cleavage reaction and SYBR Green I. In this assay, a double-stranded DNA (dsDNA) was stained with SYBR Green I and used as a substrate for T4 PNK. After the 5′-hydroxyl termini of the dsDNA was phosphorylated by the T4 PNK, the coupled λ exonuclease began to digest the dsDNA to form mononucletides and single-stranded DNA (ssDNA). At this moment, the fluorescence intensity of the SYBR Green I decreased because of less affinity with ssDNA than dsDNA. The decreasing extent was proportional to the concentration of the T4 PNK. After optimization of the detection conditions, including the concentration of ATP, amount of λ exonuclease and reaction time, the activity of T4 PNK was monitored by the fluorescence measurement, with the limit of detection of 0.11 U mL −1 and good linear correlation between 0.25–1.00 U mL −1 ( R 2 = 0.9896). In this assay, no label was needed for fluorescence detection. Moreover, the inhibition behaviors of the T4 PNK's inhibitors were evaluated by this assay. The result indicated the potential of using this assay for monitoring of the phosphorylation-related process.more » « less
-
Phages (viruses that infect bacteria) play important roles in the gut ecosystem through infection of bacterial hosts, yet the gut virome remains poorly characterized. Mammalian gut viromes are dominated by double-stranded DNA (dsDNA) phages belonging to the order Caudovirales and single-stranded DNA (ssDNA) phages belonging to the family Microviridae. Since the relative proportion of each of these phage groups appears to correlate with age and health status in humans, it is critical to understand both ssDNA and dsDNA phages in the gut. Building upon prior research describing dsDNA viruses in the gut of Ciona robusta, a marine invertebrate model system used to study gut microbial interactions, this study investigated ssDNA phages found in the Ciona gut. We identified 258 Microviridae genomes, which were dominated by novel members of the Gokushovirinae subfamily, but also represented several proposed phylogenetic groups (Alpavirinae, Aravirinae, Group D, Parabacteroides prophages, and Pequeñovirus) and a novel group. Comparative analyses between Ciona specimens with full and cleared guts, as well as the surrounding water, indicated that Ciona retains a distinct and highly diverse community of ssDNA phages. This study significantly expands the known diversity within the Microviridae family and demonstrates the promise of Ciona as a model system for investigating their role in animal health.more » « less
-
null (Ed.)Abstract Escherichia coli SSB (EcSSB) is a model single-stranded DNA (ssDNA) binding protein critical in genome maintenance. EcSSB forms homotetramers that wrap ssDNA in multiple conformations to facilitate DNA replication and repair. Here we measure the binding and wrapping of many EcSSB proteins to a single long ssDNA substrate held at fixed tensions. We show EcSSB binds in a biphasic manner, where initial wrapping events are followed by unwrapping events as ssDNA-bound protein density passes critical saturation and high free protein concentration increases the fraction of EcSSBs in less-wrapped conformations. By destabilizing EcSSB wrapping through increased substrate tension, decreased substrate length, and protein mutation, we also directly observe an unstable bound but unwrapped state in which ∼8 nucleotides of ssDNA are bound by a single domain, which could act as a transition state through which rapid reorganization of the EcSSB–ssDNA complex occurs. When ssDNA is over-saturated, stimulated dissociation rapidly removes excess EcSSB, leaving an array of stably-wrapped complexes. These results provide a mechanism through which otherwise stably bound and wrapped EcSSB tetramers are rapidly removed from ssDNA to allow for DNA maintenance and replication functions, while still fully protecting ssDNA over a wide range of protein concentrations.more » « less
-
Abstract Museum specimens collected prior to cryogenic tissue storage are increasingly being used as genetic resources, and though high‐throughput sequencing is becoming more cost‐efficient, whole genome sequencing (WGS) of historical DNA (hDNA) remains inefficient and costly due to its short fragment sizes and high loads of exogenous DNA, among other factors. It is also unclear how sequencing efficiency is influenced by DNA sources. We aimed to identify the most efficient method and DNA source for collecting WGS data from avian museum specimens. We analyzed low‐coverage WGS from 60 DNA libraries prepared from four American Robin ( Turdus migratorius ) and four Abyssinian Thrush ( Turdus abyssinicus ) specimens collected in the 1920s. We compared DNA source (toepad versus incision‐line skin clip) and three library preparation methods: (1) double‐stranded DNA (dsDNA), single tube (KAPA); (2) single‐stranded DNA (ssDNA), multi‐tube (IDT); and (3) ssDNA, single tube (Claret Bioscience). We found that the ssDNA, multi‐tube method resulted in significantly greater endogenous DNA content, average read length, and sequencing efficiency than the other tested methods. We also tested whether a predigestion step reduced exogenous DNA in libraries from one specimen per species and found promising results that warrant further study. The ~10% increase in average sequencing efficiency of the best‐performing method over a commonly implemented dsDNA library preparation method has the potential to significantly increase WGS coverage of hDNA from bird specimens. Future work should evaluate the threshold for specimen age at which these results hold and how the combination of library preparation method and DNA source influence WGS in other taxa.more » « less