skip to main content


Title: A roadmap to integrate astrocytes into Systems Neuroscience
Abstract

Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well‐documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub‐serve coding and higher‐brain functions. First, we reviewed Systems‐like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte–neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy‐efficient coding. Clarifying the relationship between astrocytic Ca2+and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease.

 
more » « less
NSF-PAR ID:
10459189
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Glia
Volume:
68
Issue:
1
ISSN:
0894-1491
Page Range / eLocation ID:
p. 5-26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Syncytial isopotentiality, resulting from a strong electrical coupling, emerges as a physiological mechanism that coordinates individual astrocytes to function as a highly efficient system in brain homeostasis. However, whether syncytial isopotentiality occurs selectively to certain brain regions or is universal to astrocytic networks remains unknown. Here, we have explored the correlation of syncytial isopotentiality with different astrocyte subtypes in various brain regions. Using a nonphysiological K+‐free/Na+electrode solution to depolarize a recorded astrocyte in situ, the existence of syncytial isopotentiality can be revealed: the recorded astrocyte's membrane potential remains at a quasi‐physiological level due to strong electrical coupling with neighboring astrocytes. Syncytial isopotentiality appears in Layer I of the motor, sensory, and visual cortical regions, where astrocytes are organized with comparable cell densities, interastrocytic distances, and the quantity of directly coupled neighbors. Second, though astrocytes vary in their cytoarchitecture in association with neuronal circuits from Layers I–VI, the established syncytial isopotentiality remains comparable among different layers in the visual cortex. Third, neurons and astrocytes are uniquely organized as barrels in Layer IV somatosensory cortex; interestingly, astrocytes both inside and outside of the barrels do electrically communicate with each other and also share syncytial isopotentiality. Fourth, syncytial isopotentiality appears in radial‐shaped Bergmann glia and velate astrocytes in the cerebellar cortex. Fifth, although fibrous astrocytes in white matter exhibit a distinct morphology, their network syncytial isopotentiality is comparable with protoplasmic astrocytes. Altogether, syncytial isopotentiality appears as a system‐wide electrical feature of astrocytic networks in the brain.

     
    more » « less
  2. Abstract

    Astrocytes are actively involved in a neuroprotective role in the brain, which includes scavenging reactive oxygen species to minimize tissue damage. They also modulate neuroinflammation and reactive gliosis prevalent in several brain disorders like epilepsy, Alzheimer's, and Parkinson's disease. In animal models, targeted manipulation of astrocytic function via modulation of their calcium (Ca2+) oscillations by incorporating light‐sensitive cation channels like Channelrhodopsin‐2 (ChR2) offers a promising avenue in influencing the long‐term progression of these disorders. However, using adult animals for Ca2+imaging poses major challenges, including accelerated deterioration ofin situslice health and age‐ related changes. Additionally, optogenetic preparations necessitate usage of a red‐shifted Ca2+indicator like Rhod‐2 AM to avoid overlapping light issues between ChR2 and the Ca2+indicator during simultaneous optogenetic stimulation and imaging. In this article, we provide an experimental setting that uses live adult murine brain slices (2‐5 months) from a knock‐in model expressing Channelrhodopsin‐2 (ChR2(C128S)) in cortical astrocytes, loaded with Rhod‐2 AM to elicit robust Ca2+response to light stimulation. We have developed and standardized a protocol for brain extraction, sectioning, Rhod‐2 AM loading, maintenance of slice health, and Ca2+imaging during light stimulation. This has been successfully applied to optogenetically control adult cortical astrocytes, which exhibit synchronous patterns of Ca2+activity upon light stimulation, drastically different from resting spontaneous activity. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Experimental preparation, setup, slice preparation and Rhod‐2 AM staining

    Basic Protocol 2: Image acquisition and analysis

     
    more » « less
  3. The notion that a neuron transmits the same set of neurotransmitters at all of its post-synaptic connections, typically known as Dale's law, is well supported throughout the majority of the brain and is assumed in almost all theoretical studies investigating the mechanisms for computation in neuronal networks. Dale's law has numerous functional implications in fundamental sensory processing and decision-making tasks, and it plays a key role in the current understanding of the structure-function relationship in the brain. However, since exceptions to Dale's law have been discovered for certain neurons and because other biological systems with complex network structure incorporate individual units that send both positive and negative feedback signals, we investigate the functional implications of network model dynamics that violate Dale's law by allowing each neuron to send out both excitatory and inhibitory signals to its neighbors. We show how balanced network dynamics, in which large excitatory and inhibitory inputs are dynamically adjusted such that input fluctuations produce irregular firing events, are theoretically preserved for a single population of neurons violating Dale's law. We further leverage this single-population network model in the context of two competing pools of neurons to demonstrate that effective decision-making dynamics are also produced, agreeing with experimental observations from honeybee dynamics in selecting a food source and artificial neural networks trained in optimal selection. Through direct comparison with the classical two-population balanced neuronal network, we argue that the one-population network demonstrates more robust balanced activity for systems with less computational units, such as honeybee colonies, whereas the two-population network exhibits a more rapid response to temporal variations in network inputs, as required by the brain. We expect this study will shed light on the role of neurons violating Dale's law found in experiment as well as shared design principles across biological systems that perform complex computations. 
    more » « less
  4. ABSTRACT

    Animal locomotion is the result of complex and multi-layered interactions between the nervous system, the musculo-skeletal system and the environment. Decoding the underlying mechanisms requires an integrative approach. Comparative experimental biology has allowed researchers to study the underlying components and some of their interactions across diverse animals. These studies have shown that locomotor neural circuits are distributed in the spinal cord, the midbrain and higher brain regions in vertebrates. The spinal cord plays a key role in locomotor control because it contains central pattern generators (CPGs) – systems of coupled neuronal oscillators that provide coordinated rhythmic control of muscle activation that can be viewed as feedforward controllers – and multiple reflex loops that provide feedback mechanisms. These circuits are activated and modulated by descending pathways from the brain. The relative contributions of CPGs, feedback loops and descending modulation, and how these vary between species and locomotor conditions, remain poorly understood. Robots and neuromechanical simulations can complement experimental approaches by testing specific hypotheses and performing what-if scenarios. This Review will give an overview of key knowledge gained from comparative vertebrate experiments, and insights obtained from neuromechanical simulations and robotic approaches. We suggest that the roles of CPGs, feedback loops and descending modulation vary among animals depending on body size, intrinsic mechanical stability, time required to reach locomotor maturity and speed effects. We also hypothesize that distal joints rely more on feedback control compared with proximal joints. Finally, we highlight important opportunities to address fundamental biological questions through continued collaboration between experimentalists and engineers.

     
    more » « less
  5. Abstract

    Steroid hormones are often synthesized in multiple tissues, affect several different targets, and modulate numerous physiological endpoints. The mechanisms by which this modulation is achieved with temporal and spatial specificity remain unclear. 17β‐estradiol for example, is made in several peripheral tissues and in the brain, where it affects a diverse set of behaviors. How is estradiol delivered to the right target, at the right time, and at the right concentration? In the last two decades, we have learned that aromatase (estrogen‐synthase) can be induced in astrocytes following damage to the brain and is expressed at central synapses. Both mechanisms of estrogen provision confer spatial and temporal specificity on a lipophilic neurohormone with potential access to all cells and tissues. In this review, I trace the progress in our understanding of astrocytic and synaptic aromatization. I discuss the incidence, regulation, and functions of neuroestradiol provision by aromatization, first in astrocytes and then at synapses. Finally, I focus on a relatively novel hypothesis about the role of neuroestradiol in the orchestration of species‐specific behaviors.

     
    more » « less