Integrated quantum photonic circuitry is an emerging topic that requires efficient coupling of quantum light sources to waveguides and optical resonators. So far, great effort is devoted to engineering on‐chip systems from 3D crystals such as diamond or gallium arsenide. In this study, room‐temperature coupling is demonstrated of quantum emitters embedded in layered hexagonal boron nitride to an on‐chip aluminum nitride waveguide. 1.35% light coupling efficiency is achieved in the device and transmission of single photons through the waveguide is demonstrated. The results serve as foundation for integrating layered materials to on‐chip components and realizing integrated quantum photonic circuitry.
more » « less- NSF-PAR ID:
- 10459220
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 7
- Issue:
- 23
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Aluminum gallium arsenide-on-insulator (AlGaAsOI) exhibits large [Formula: see text] and [Formula: see text] optical nonlinearities, a wide tunable bandgap, low waveguide propagation loss, and a large thermo-optic coefficient, making it an exciting platform for integrated quantum photonics. With ultrabright sources of quantum light established in AlGaAsOI, the next step is to develop the critical building blocks for chip-scale quantum photonic circuits. Here we expand the quantum photonic toolbox for AlGaAsOI by demonstrating edge couplers, 3 dB splitters, tunable interferometers, and waveguide crossings with performance comparable to or exceeding silicon and silicon-nitride quantum photonic platforms. As a demonstration, we de-multiplex photonic qubits through an unbalanced interferometer, paving the route toward ultra-efficient and high-rate chip-scale demonstrations of photonic quantum computation and information applications.more » « less
-
Abstract The scaling of many photonic quantum information processing systems is ultimately limited by the flux of quantum light throughout an integrated photonic circuit. Source brightness and waveguide loss set basic limits on the on-chip photon flux. While substantial progress has been made, separately, towards ultra-low loss chip-scale photonic circuits and high brightness single-photon sources, integration of these technologies has remained elusive. Here, we report the integration of a quantum emitter single-photon source with a wafer-scale, ultra-low loss silicon nitride photonic circuit. We demonstrate triggered and pure single-photon emission into a Si3N4photonic circuit with ≈ 1 dB/m propagation loss at a wavelength of ≈ 930 nm. We also observe resonance fluorescence in the strong drive regime, showing promise towards coherent control of quantum emitters. These results are a step forward towards scaled chip-integrated photonic quantum information systems in which storing, time-demultiplexing or buffering of deterministically generated single-photons is critical.
-
Chip-scale, tunable narrow-linewidth hybrid integrated diode lasers based on quantum-dot RSOAs at 1.3 μm are demonstrated through butt-coupling to a silicon nitride photonic integrated circuit. The hybrid laser linewidth is around 85 kHz, and the tuning range is around 47 nm. Then, a fully integrated beam steerer is demonstrated by combining the tunable diode laser with a waveguide surface grating. Our system can provide beam steering of 4.1° in one direction by tuning the wavelength of the hybrid laser. Besides, a wavelength-tunable triple-band hybrid laser system working at
, , and bands is demonstrated for wide-angle beam steering in a single chip. -
Integrated nonlinear photonic circuits received rapid development in recent years, providing all-optical functionalities enabled by cavity-enhanced photon-photon interaction for classical and quantum applications. A high-efficiency fiber-to-chip interface is key to these integrated photonic circuits for quantum information tasks, as photon-loss is a major source that weakens quantum protocols. Here, overcoming material and fabrication limitation of thin-film aluminum nitride by adopting a stepwise waveguiding scheme, we demonstrate low-loss adiabatic fiber-optic couplers in aluminum nitride films with a substantial thickness (∼600 nm) for optimized nonlinear photon interaction. For telecom (1550 nm) and near-visible (780 nm) transverse magnetic-polarized light, the measured insertion loss of the fiber-optic coupler is -0.97 dB and -2.6 dB, respectively. Our results will facilitate the use of aluminum nitride integrated photonic circuits as efficient quantum resources for generation of entangled photons and squeezed light on microchips.
-
The efficient, large-scale generation and control of photonic modes guided by van der Waals materials remains as a challenge despite their potential for on-chip photonic circuitry. We report three-atom-thick waveguides—δ waveguides—based on wafer-scale molybdenum disulfide (MoS2) monolayers that can guide visible and near-infrared light over millimeter-scale distances with low loss and an efficient in-coupling. The extreme thinness provides a light-trapping mechanism analogous to a δ-potential well in quantum mechanics and enables the guided waves that are essentially a plane wave freely propagating along the in-plane, but confined along the out-of-plane, direction of the waveguide. We further demonstrate key functionalities essential for two-dimensional photonics, including refraction, focusing, grating, interconnection, and intensity modulation, by integrating thin-film optical components with δ waveguides using microfabricated dielectric, metal, or patterned MoS2.