skip to main content


Title: High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem
Abstract

Pit membranes between xylem vessels play a major role in angiosperm water transport. Yet, their three‐dimensional (3D) structure as fibrous porous media remains unknown, largely due to technical challenges and sample preparation artefacts. Here, we applied a modelling approach based on thickness measurements of fresh and fully shrunken pit membranes of seven species. Pore constrictions were also investigated visually by perfusing fresh material with colloidal gold particles of known sizes. Based on a shrinkage model, fresh pit membranes showed tiny pore constrictions of ca. 20 nm, but a very high porosity (i.e. pore volume fraction) of on average 0.81. Perfusion experiments showed similar pore constrictions in fresh samples, well below 50 nm based on transmission electron microscopy. Drying caused a 50% shrinkage of pit membranes, resulting in much smaller pore constrictions. These findings suggest that pit membranes represent a mesoporous medium, with the pore space characterized by multiple constrictions. Constrictions are much smaller than previously assumed, but the pore volume is large and highly interconnected. Pores do not form highly tortuous, bent, or zigzagging pathways. These insights provide a novel view on pit membranes, which is essential to develop a mechanistic, 3D understanding of air‐seeding through this porous medium.

 
more » « less
Award ID(s):
1754850
NSF-PAR ID:
10459221
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Plant, Cell & Environment
Volume:
43
Issue:
1
ISSN:
0140-7791
Page Range / eLocation ID:
p. 116-130
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Pit membranes in bordered pits of tracheary elements of angiosperm xylem represent primary cell walls that undergo structural and chemical modifications, not only during cell death but also during and after their role as safety valves for water transport between conduits. Cellulose microfibrils, which are typically grouped in aggregates with a diameter between 20 to 30 nm, make up their main component. While it is clear that pectins and hemicellulose are removed from immature pit membranes during hydrolysis, recent observations of amphiphilic lipids and proteins associated with pit membranes raise important questions about drought-induced embolism formation and spread via air-seeding from gas-filled conduits. Indeed, mechanisms behind air-seeding remain poorly understood, which is due in part to little attention paid to the three-dimensional structure of pit membranes in earlier studies. Based on perfusion experiments and modelling, pore constrictions in fibrous pit membranes are estimated to be well below 50 nm, and typically smaller than 20 nm. Together with the low dynamic surface tensions of amphiphilic lipids at air-water interfaces in pit membranes, 5 to 20 nm pore constrictions are in line with the observed xylem water potentials values that generally induce spread of embolism. Moreover, pit membranes appear to show ideal porous medium properties for sap flow to promote hydraulic efficiency and safety due to their very high porosity (pore volume fraction), with highly interconnected, non-tortuous pore pathways, and the occurrence of multiple pore constrictions within a single pore. This three-dimensional view of pit membranes as mesoporous media may explain the relationship between pit membrane thickness and embolism resistance, but is largely incompatible with earlier, two-dimensional views on air-seeding. It is hypothesised that pit membranes enable water transport under negative pressure by producing stable, surfactant coated nanobubbles while preventing the entry of large bubbles that would cause embolism. 
    more » « less
  2. Abstract The surface tension of xylem sap has been traditionally assumed to be close to that of the pure water because decreasing surface tension is thought to increase vulnerability to air seeding and embolism. However, xylem sap contains insoluble lipid-based surfactants, which also coat vessel and pit membrane surfaces, where gas bubbles can enter xylem under negative pressure in the process known as air seeding. Because of the insolubility of amphiphilic lipids, the surface tension influencing air seeding in pit pores is not the equilibrium surface tension of extracted bulk sap but the local surface tension at gas–liquid interfaces, which depends dynamically on the local concentration of lipids per surface area. To estimate the dynamic surface tension in lipid layers that line surfaces in the xylem apoplast, we studied the time-dependent and surface area-regulated surface tensions of apoplastic lipids extracted from xylem sap of four woody angiosperm plants using constrained drop surfactometry. Xylem lipids were found to demonstrate potent surface activity, with surface tensions reaching an equilibrium at ~25 mN m-1 and varying between a minimum of 19 mN m-1 and a maximum of 68 mN m-1 when changing the surface area between 50 and 160% around the equilibrium surface area. It is concluded that xylem lipid films in natural conditions most likely range from nonequilibrium metastable conditions of a supersaturated compression state to an undersaturated expansion state, depending on the local surface areas of gas–liquid interfaces. Together with findings that maximum pore constrictions in angiosperm pit membranes are much smaller than previously assumed, low dynamic surface tension in xylem turns out to be entirely compatible with the cohesion–tension and air-seeding theories, as well as with the existence of lipid-coated nanobubbles in xylem sap, and with the range of vulnerabilities to embolism observed in plants. 
    more » « less
  3. Summary

    Embolism spreading in angiosperm xylem occurs via mesoporous pit membranes between vessels. Here, we investigate how the size of pore constrictions in pit membranes is related to pit membrane thickness and embolism resistance.

    Pit membranes were modelled as multiple layers to investigate how pit membrane thickness and the number of intervessel pits per vessel determine pore constriction sizes, the probability of encountering large pores, and embolism resistance. These estimations were complemented by measurements of pit membrane thickness, embolism resistance, and number of intervessel pits per vessel in stem xylem (n = 31, 31 and 20 species, respectively).

    The modelled constriction sizes in pit membranes decreased with increasing membrane thickness, explaining the measured relationship between pit membrane thickness and embolism resistance. The number of pits per vessel affected constriction size and embolism resistance much less than pit membrane thickness. Moreover, a strong relationship between modelled and measured embolism resistance was observed.

    Pore constrictions provide a mechanistic explanation for why pit membrane thickness determines embolism resistance, which suggests that hydraulic safety can be uncoupled from hydraulic efficiency. Although embolism spreading remains puzzling and encompasses more than pore constriction sizes, angiosperms are unlikely to have leaky pit membranes, which enables tensile transport of water.

     
    more » « less
  4. Cells encapsulated in 3D hydrogels exhibit differences in cellular mechanosensing based on their ability to remodel their surrounding hydrogel environment. Although cells in tissue interfaces feature a range of mechanosensitive states, it is challenging to recreate this in 3D biomaterials. Human mesenchymal stem cells (MSCs) encapsulated in methacrylated gelatin (GelMe) hydrogels remodel their local hydrogel environment in a time-dependent manner, with a significant increase in cell volume and nuclear Yes-associated protein (YAP) localization between 3 and 5 days in culture. A finite element analysis model of compression showed spatial differences in hydrogel stress of compressed GelMe hydrogels, and MSC-laden GelMe hydrogels were compressed (0–50%) for 3 days to evaluate the role of spatial differences in hydrogel stress on 3D cellular mechanosensing. MSCs in the edge (high stress) were significantly larger, less round, and had increased nuclear YAP in comparison to MSCs in the center (low stress) of 25% compressed GelMe hydrogels. At 50% compression, GelMe hydrogels were under high stress throughout, and this resulted in a consistent increase in MSC volume and nuclear YAP across the entire hydrogel. To recreate heterogeneous mechanical signals present in tissue interfaces, porous polycaprolactone (PCL) scaffolds were perfused with an MSC-laden GelMe hydrogel solution. MSCs in different pore diameter (~280–430 μm) constructs showed an increased range in morphology and nuclear YAP with increasing pore size. Hydrogel stress influences MSC mechanosensing, and porous scaffold-hydrogel composites that expose MSCs to diverse mechanical signals are a unique biomaterial for studying and designing tissue interfaces. 
    more » « less
  5. Abstract

    Extrusion‐based 3D printing of polymeric biomaterials has emerged as a promising approach for the fabrication of complex tissue engineering constructs. However, the large pore and feature size lead to low cell seeding efficiency and limited control of spatial distribution of cells within the scaffolds. We developed hybrid scaffolds that are composed of 3D‐printed layers and airbrushed fibrous membranes. Airbrushing time was adjusted to fabricate low (L), medium (M), and high (H) density membranes to effectively control stem cell infiltration. When two distinct populations of stem cells were seeded from top or bottom of the scaffolds, scaffolds composed ofLLLmembranes showed gradual mixing of the cells with depth, whereasLHLmembranes led to two distinct regions of cells separated by theHmembrane. Our results demonstrate that fibrous membranes incorporated within 3D‐printed layers enable user‐defined and spatially controlled cell compositions within hybrid scaffolds.

     
    more » « less