skip to main content


Title: Incorporating wildlife connectivity into forest plan revision under the United States Forest Service's 2012 planning rule
Abstract

The United States Forest Service promulgated new planning regulations under the National Forest Management Act in 2012 (i.e., the Planning Rule). These new regulations include the first requirements in U.S. public land management history for National Forests to evaluate, protect, and/or restore ecological connectivity as they revise their land management plans. Data and resource limitations make single‐species, functional connectivity analyses for the myriad species that occur within the 78 million ha the Forest Service manages implausible. We describe an approach that relies on freely available data and generic species, virtual species whose profile consists of ecological requirements designed to reflect the needs of a group of real species, to address the new Planning Rule requirements. We present high‐resolution connectivity estimates for 10 different generic species across a 379,000 ha study area centered on the Custer Gallatin National Forest (CGNF) in Montana and South Dakota under two different movement models. We identify locations important for connectivity for multiple species and characterize the role of the CGNF for regional connectivity. Our results informed the Plan Revision process on the CGNF and could be readily exported to other National Forests currently or planning to revise their land management plans under the new Planning Rule.

 
more » « less
NSF-PAR ID:
10459256
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Conservation Science and Practice
Volume:
2
Issue:
2
ISSN:
2578-4854
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since the 1980s, the U.S. Forest Service (USFS) has transformed from an agency predominantly focused on timber production to one focused on recreation and ecosystem management. This shift is particularly remarkable because it occurred without major substantive national forest policy changes. During this period, many national forests changed their forest planning processes in ways that provided greater opportunity for public input into forest plans, and in 2012 the USFS issued new planning rules that institutionalized these practices. In this study, we ask: how has the planning process changed over time, and how have these changes shaped forest plan outcomes? To answer these questions, we conduct a comparative case study of two national forests—the Lake Tahoe Basin Management Unit and the Inyo National Forest—that produced forest plans in the 1980s and again in the 2010s. We use the Network of Action Situations (NAS) approach to compare planning processes over time and across forests. We find that in addition to the changes mandated by the 2012 rules, both forests developed a series of forums to engage the public in plan development and review, and that increased stakeholder engagement has helped shape forest priorities. These findings suggest that greater involvement by regional stakeholders could pressure the USFS to adopt more regional approaches for addressing challenges like climate change and wildfire risk. 
    more » « less
  2. Abstract

    As demand for wood products increases in step with global population growth, balancing the potentially competing values of biodiversity conservation, carbon storage and timber production is a major challenge. Land sparing involves conserving forest while growing timber in intensively managed areas. On the other hand, land sharing utilizes ecological forestry approaches, but with a larger management footprint due to lower yields. While the sparing‐sharing framework has been widely tested and debated in agricultural settings to balance competing values, such land‐allocation strategies have been rarely studied in forestry.

    We examined whether a sparing, sharing or Triad strategy best achieves multiple forest objectives simultaneously. In Triad, management units (stands) in forest landscapes are allocated to one of three treatments: reserve (where conservation is the sole objective), intensive (timber production is the sole objective) and ecological (both objectives are combined). To our knowledge, ours is the first Triad study from the temperate zone to quantify direct measures of biodiversity (e.g. species' abundance).

    Using a commonly utilized forest planning tool parameterized with empirical data, we modelled the capacity of a temperate rainforest to provide multiple ecosystem services (biodiversity, carbon storage, timber production and old‐growth forest structure) over 125 years based on 43 different allocation scenarios. We then quantified trade‐offs between scenarios, taking into account the landscape structure, and determined which strategies most consistently balanced ecosystem services.

    Sparing strategies were best when the services provided by both old‐growth and early seral (young) forests were prioritized, but at a cost to species associated with mid‐seral stages, which benefitted most from Triad and sharing strategies. Therefore, sparing provides the greatest net benefit, particularly given that old‐growth‐associated species and ecosystem services are currently of the greatest conservation concern.

    Synthesis and applications. We found that maximizing multiple elements of biodiversity and ecosystem services simultaneously with a single management strategy was elusive. The strategy that maximized each service and species varied greatly by both the service and the level of timber production. Fortunately, a diversity of management options can produce the same wood supply, providing ample decision space for establishing priorities and evaluating trade‐offs.

     
    more » « less
  3. Abstract Background

    Understanding pre-1850s fire history and its effect on forest structure can provide insights useful for fire managers in developing plans to moderate fire hazards in the face of forecasted climate change. While climate clearly plays a substantial role in California wildfires, traditional use of fire by Indigenous people also affected fire history and forest structure in the Sierra Nevada. Disentangling the effects of human versus climatically-induced fire on Sierran forests from paleoecological records has historically proved challenging, but here we use pollen-based forest structure reconstructions and comparative paleoclimatic-vegetation response modeling to identify periods of human impact over the last 1300 years at Markwood Meadow, Sierra National Forest.

    Results

    We find strong evidence for anthropogenic fires at Markwood Meadow ca. 1550 – 1750 C.E., contemporaneous with archaeological evidence for fundamental shifts in Indigenous lifeways. When we compare our findings to five other paleoecological sites in the central and southern Sierra Nevada, we find evidence for contemporaneous anthropogenic effects on forest structure across a broad swath of cismontane central California. This is significant because it implies that late 19th and early twentieth century forest structure – the structure that land managers most often seek to emulate – was in part the result anthropogenic fire and precolonial resource management.

    Conclusion

    We consequently suggest that modern management strategies consider (1) further incorporating traditional ecological knowledge fire practices in consultation with local tribal groups, and (2) using pollen-based reconstructions to track how forest composition compares to pre-1850 C.E. conditions rather than the novel forest states encountered in the late 20th and early twenty-first centuries. These strategies could help mitigate the effects of forecast climate change and associated megafires on forests and on socio-ecological systems in a more comprehensive manner.

     
    more » « less
  4. Most Hawaiian forests lack resiliency following disturbance due to the presence of non‐native and invasive plant and animal species. The montane wet forest within Hakalau Forest National Wildlife Refuge on Hawai'i island has a long history of ungulate disturbance but portions of the refuge were fenced and most ungulates excluded by the early 1990s. We examined patterns of regeneration within two 100 ha study sites in this forest following the removal of ungulates and in the absence of invasive woody tree species to determine, in part, if passive restoration techniques can be successful under these conditions. We characterized growth, mortality, and basal area (BA) changes for approximately 7,100 marked individuals of all native tree species present in two surveys over a 17–18‐year period within two hundred 30 m diameter forest plots. Considerable recruitment within plots of new trees of all species significantly changed size class distributions and erased deficits in small‐sized trees observed during the first survey, particularly for the codominant canopy tree, koa (Acacia koa). Overall, growth of established dominant 'ōhi'a trees (Metrosideros polymorpha) and recruitment of mid‐canopy trees contributed to increases in BA while high levels of mortality for largeA.koatrees contributed to decreased BA. This resulted in a slight increase in BA between the two surveys (+1.9%). This study demonstrates that fencing and ungulate removal may have rescued theA.koapopulation by facilitating the first real pulse in recruitment in over a century, and that passive restoration can be a successful management strategy in this forest.

     
    more » « less
  5. Maps showing the estimated territorial boundaries of all bird species occupying the 10-ha bird plot in the Hubbard Brook Experimental Forest, 1969-2021. These data were used in estimating the abundance of bird populations during this period (e.g., Holmes and Sturges 1975, Holmes et al. 1986, Holmes and Sherry 1988, 2001, Holmes 2011). These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Papers associated with this dataset: Holmes, R. T., & Sturges, F. W. (1975). Bird Community Dynamics and Energetics in a Northern Hardwoods Ecosystem. Journal of Animal Ecology, 44(1), 175–200. https://doi.org/10.2307/3857 Sherry, T. W. (1979). Competitive interactions and adaptive strategies of American Redstarts and Least Flycatchers in a northern hardwoods forest. The Auk, 96(2), 265-283. Holmes, R. T., Bonney, R. E., & Pacala, S. W. (1979). Guild Structure of the Hubbard Brook Bird Community: A Multivariate Approach. Ecology, 60(3), 512–520. https://doi.org/10.2307/1936071 Holmes, R. T., Sherry, T. W., & Sturges, F. W. (1986). Bird Community Dynamics in a Temperate Deciduous Forest: Long-Term Trends at Hubbard Brook. Ecological Monographs, 56(3), 201–220. https://doi.org/10.2307/2937074 Holmes, R. T., & Robinson, S. K. (1988). Spatial patterns, foraging tactics, and diets of ground-foraging birds in a northern hardwoods forest. The Wilson Bulletin, 377-394. Holmes, R. T., & Sherry, T. W. (1988). Assessing population trends of New Hampshire forest birds: local vs. regional patterns. The Auk, 105(4), 756-768. 10.2307/4087390 Holmes, R. T., & Sherry, T. W. (2001). Thirty-year bird population trends in an unfragmented temperate deciduous forest: importance of habitat change. The Auk, 118(3), 589-609. https://doi.org/10.1093/auk/118.3.589 Holmes, R. T. (2011). Avian population and community processes in forest ecosystems: Long-term research in the Hubbard Brook Experimental Forest. Forest Ecology and Management, 262(1), 20-32. https://doi.org/10.1016/j.foreco.2010.06.021 Associated datasets in the data catalog: Holmes, R.T., N.L. Rodenhouse, and M.T. Hallworth. 2022. Bird Abundances at the Hubbard Brook Experimental Forest (1969-present) and on three replicate plots (1986-2000) in the White Mountain National Forest ver 8. Environmental Data Initiative. https://doi.org/10.6073/pasta/6422a72893616ce9020086de5a5714cd (Accessed 2023-12-17). 
    more » « less