The application of high-power, few-cycle, long-wave infrared (LWIR, 8–20 µm) pulses in strong-field physics is largely unexplored due to the lack of suitable sources. However, the generation of intense pulses with >6 µm wavelength range is becoming increasingly feasible with the recent advances in high-power ultrashort lasers in the middle-infrared range that can serve as a pump for optical parametric amplifiers (OPA). Here we experimentally demonstrate the feasibility of this approach by building an OPA pumped at 2.4 µm that generates 93 µJ pulses at 9.5 µm, 1 kHz repetition rate with sub-two-cycle pulse duration, 1.6 GW peak power, and excellent beam quality. The results open a wide range of applications in attosecond physics (especially for studies of condensed phase samples), remote sensing, and biophotonics.
We present a method for increasing the power of mid-infrared laser pulses generated by a conventional beta-barium borate (BBO) optical parametric amplifier (OPA) and AgGaS2difference frequency generation (DFG) pumped by a Ti:sapphire amplifier. The method involves an additional stage of parametric amplification with a second AgGaS2crystal pumped by selected outputs of the conventional DFG stage. This method does not require additional pump power from the Ti:sapphire laser source and improves the overall photon conversion efficiency for generating mid-infrared light. It merely requires an additional AgGaS2crystal and dichroic mirrors. Following difference frequency generation, the method reuses near-infrared light (∼1.9 µm), typically discarded, to pump the additional AgGaS2stage and amplifies the mid-infrared light twofold. We demonstrate and characterize the power, spectrum, duration, and noise of the mid-IR pulses before and after the second AgGaS2stage. We observe small changes in center frequencies, bandwidth, and pulse duration for ∼150-fs pulses between 4 and 5 µm.
more » « less- NSF-PAR ID:
- 10459321
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 48
- Issue:
- 18
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 4797
- Size(s):
- Article No. 4797
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sub-picosecond timing jitter between optically synchronized femtosecond and picosecond laser systemsAbstract Synchronized optical pulses are widely used. We report here characterization and measurement of synchronized femtosecond and picosecond pulses from a Ti:Sapphire laser (nominally 800 nm) and a Nd:YAG laser (1064 nm), respectively. Synchronization is achieved by utilizing soliton self-frequency shift in a photonic-crystal fiber that allows the 800 nm femtosecond oscillator to seed the third-harmonic generation (355 nm) of picosecond regenerative amplifier. The relative timing jitter between the amplified femtosecond and the third-harmonic generation of picosecond pulses is (710 ± 160) fs, which is only (1.17 ± 0.26)% of the picosecond pulse duration. This work paves way for applications in stimulated Raman scattering spectroscopy and amplification.more » « less
-
3.2-mJ, 92-fs pulses centered at 3.1 µm are generated at a 1-kHz repetition rate through a tabletop optical parametric chirped pulse amplification (OPCPA) system based on ZnGeP2crystals. Pumped by a 2-µm chirped pulse amplifier with a flat-top beam profile, the amplifier achieves a 16.5% overall efficiency, which, to the best of our knowledge, is the highest efficiency achieved by OPCPA at this wavelength. Harmonics up to the seventh order are observed after focusing the output in the air.
-
A femtosecond chirped pulse amplifier based on cryogenically cooled Fe:ZnSe was demonstrated at 333 Hz—33 times higher than previous results achieved at near-room-temperature. The long upper-state lifetime allows free-running, diode-pumped Er:YAG lasers to be used as pump lasers. 250-fs, 4.59-mJ pulses are produced with a center wavelength of 4.07 µm, which avoids strong atmospheric CO2absorption that cuts on around 4.2 µm. It is therefore possible to operate the laser in ambient air with good beam quality. By focusing the 18-GW beam in air, harmonics up to the ninth order were observed indicating its potential for use in strong-field experimentation.