Climate change is increasing the frequency, severity, and extent of wildfires and drought in many parts of the world, with numerous repercussions for the physical, chemical, and biological characteristics of streams. However, information on how these perturbations affect top predators and their impacts on lower trophic levels in streams is limited. The top aquatic predator in southern California streams is native Trout were present in deep pools with high water and habitat quality. Invertebrate communities in trout pools were dominated by a variety of medium‐sized collector–gatherer and shredder invertebrate taxa with non‐seasonal life cycles, whereas tadpoles and large, predatory invertebrates (Odonata, Coleoptera, Hemiptera [OCH]), often with atmospheric breather traits, were more abundant in troutless than trout pools. Structural equation modelling of the algal‐based food web indicated a trophic cascade from trout to predatory invertebrates to collector–gatherer taxa and weaker direct negative trout effects on grazers; however, both grazers and collector–gatherers also were positively related to macroalgal biomass. Structural equation modelling also suggested that bottom‐up interactions and abiotic factors drove the detritus‐based food web, with shredder abundance being positively related to leaf litter (coarse particulate organic matter) levels, which, in turn, were positively related to canopy cover and negatively related to flow. These results emphasise the context dependency of trout effects on prey communities and of the relative importance of top‐down versus bottom‐up interactions on food webs, contingent on environmental conditions (flow, light, nutrients, disturbances) and the abundances and traits of component taxa. Invertebrate assemblage structure changed from a trout to a troutless configuration within a year or two after trout were lost owing to post‐fire scouring flows or drought. Increases in OCH abundance after trout were lost were much more variable after drought than after fire. The reappearance of trout in one stream resulted in quick, severe reductions in OCH abundance. These results indicate that climate‐change induced disturbances can result in the extirpation of a top predator, with cascading repercussions for stream communities and food webs. This study also emphasises the importance of preserving or restoring refuge habitats, such as deep, shaded, perennial, cool stream pools with high habitat and water quality, to prevent the extirpation of sensitive species and preserve native biodiversity during a time of climate change.
Positive correlation between trout abundance and dissolved metal concentrations along the Upper Clark Fork River (UCFR; Montana, USA) have forced restoration practitioners to seek underlying causes of reduced fish density beyond heavy metal contamination. Throughout the river, nutrient enrichment and summer algal blooms may be hindering full recovery of trout populations. In this study, we evaluated the community structure and metal body burdens of benthic invertebrates and characterized existing trophic linkages between brown trout and dominant invertebrate taxa before and during summer algal blooms in a downstream reach of the UCFR where fish densities are low (20–30 trout/km), and where metal contamination is relevant but minimal compared with upstream. In spring, estimated invertebrate abundance was 1,727 ± 217 individuals/m2and dominated by Ephemerellidae and Baetidae families. During summer algal bloom, invertebrate abundance increased 15‐fold (20,580 ± 3,510 individuals/m2) mostly due to greater abundance of Chironomidae, Hydropsychidae, and Simulidae. Copper body burdens (130 ± 42 ppm) were higher than any other heavy metal regardless of season, but detectable concentrations of arsenic, cadmium, and lead were also found. A Bayesian mixing model combining metal burdens and stable isotopes showed that in the spring, trout of average size (355 ± 65 g) relied mostly on epibenthic taxa (Ephemerellidae and Hydropsychidae), contrasting with small (<100 g) and large (>400 g) trout relying heavily on Baetidae, a major component of invertebrate drift. Foraging segregation related to trout size did not occur during summer algal blooms, which may reflect increasing influence of benthic algal proliferation or indicate the indiscriminate use of pool habitats as thermal refugia over summer conditions by trout of different ages.
more » « less- PAR ID:
- 10459348
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- River Research and Applications
- Volume:
- 35
- Issue:
- 9
- ISSN:
- 1535-1459
- Page Range / eLocation ID:
- p. 1563-1574
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Oncorhynchus mykiss , the endangered southern California steelhead trout (trout). To examine relationships among the distribution of trout, environmental factors, and stream invertebrate resources and assemblages, we sampled pools in 25 stream reaches that differed in the presence (nine reaches) or absence (16 reaches) of trout over 12 years, including eight reaches where trout were extirpated during the study period by drought or post‐fire flood disturbances. -
Abstract Drying intermittent stream networks often have permanent water refuges that are important for recolonisation. These habitats may be hotspots for interactions between fishes and invertebrates as they become isolated, but densities and diversity of fishes in these refuges can be highly variable across time and space.
Insect emergence from streams provides energy and nutrient subsidies to riparian habitats. The magnitude of such subsidies may be influenced by in‐stream predators such as fishes.
We examined whether benthic macroinvertebrate communities, emerging adult insects, and algal biomass in permanent grassland stream pools differed among sites with naturally varying densities of fishes. We also manipulated fish densities in a mesocosm experiment to address how fishes might affect colonisation during recovery from hydrologic disturbance.
Fish biomass had a negative impact on invertebrate abundance, but not biomass or taxa richness, in natural pools. Total fish biomass was not correlated with total insect emergence in natural pools, but orangethroat darter (
Etheostoma spectabile ) biomass was inversely correlated with emerging Chironomidae biomass and individual midge body size. The interaction in our models between predatory fish biomass and date suggested that fishes may also delay insect emergence from natural pools, altering the timing of aquatic–terrestrial subsidies.There was an increase over time in algal biomass (chlorophyll‐
a ) in mesocosms, but this did not differ among fish density treatments. Regardless, fish presence in mesocosms reduced the abundance of colonising insects and total invertebrate biomass. Mesocosm invertebrate communities in treatments without fishes were characterised by more Chironomidae, Culicidae, and Corduliidae.Results suggest that fishes influence invertebrates in habitats that represent important refuges during hydrologic disturbance, hot spots for subsidy exports to riparian food webs, and source areas for colonists during recovery from hydrologic disturbance. Fish effects in these systems include decreasing invertebrate abundance, shifting community structure, and altering patterns of invertebrate emergence and colonisation.
-
Abstract Hybridization between native and introduced species is considered a serious threat for many native fish populations. In western North America, native cutthroat trout Oncorhynchus clarkii subspecies are declining dramatically across their ranges; competition and hybridization with nonnative rainbow trout O. mykiss are recognized as key factors in their decline. Presently, identification of cutthroat trout × rainbow trout hybrids is commonly made using molecular genetic markers because morphological differences are thought to be inaccurate. We sampled trout from the South Fork of the Snake River and 10 tributary streams to test for morphological differences that could predict genetic identity of individual Yellowstone cutthroat trout O. clarkii bouvieri, rainbow trout, and their hybrids. We found distinctive body shape differences among the three groups: Yellowstone cutthroat trout and hybrids had larger heads than rainbow trout. Yellowstone cutthroat trout had shallower bodies and caudal peduncles than rainbow trout, whereas hybrids exhibited intermediate body depth and caudal peduncle depth. Using logistic regression with a suite of morphological measurements, we found an overall rate of 92% for correctly classifying trout as Yellowstone cutthroat trout, hybrids, or rainbow trout. Over 99% of Yellowstone cutthroat trout and 80% of rainbow trout were correctly categorized; however, the correct classification rate for hybridized individuals was considerably lower. This study demonstrates that consistent morphological differences exist between Yellowstone cutthroat trout and rainbow trout in the wild, and the degree of introgression accounts for a significant portion of morphological variation in Yellowstone cutthroat trout × rainbow trout hybrids, thus causing difficulty in the use of morphology alone to classify trout.
-
Food availability is a primary factor limiting the abundance of wild populations, but quantifying it requires an understanding of when and where prey are vulnerable to predators. Salmonid fishes in streams are commonly thought to forage on drifting aquatic invertebrates during daylight hours. However, past studies also report benthic and nocturnal foraging despite the predominant view of salmonids as diurnal drift-feeding predators. We used instream videography to assess foraging mode and energy intake for stream-dwelling Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri. We recorded the foraging behavior of wild fish with a waterproof video camera and estimated energy intake based on fish size, foraging rate, retention rate, and caloric values of prey. Fish captured prey primarily from the water column and surface, targeting drifting invertebrates during daytime hours; however, they also foraged from the stream benthos and during nighttime. Yellowstone Cutthroat Trout foraging rate was most strongly related to foraging location in the stream, diel period, and month. Energy intake was highest from daytime drift-foraging behavior and exceeded a modeled metabolic limit of food intake during October and November. Nocturnal and benthic foraging contributed the smallest proportion of total foraging attempts but was observed over all months of our study and sometimes comprised up to 30% of estimated energy intake. Our results indicate that Yellowstone Cutthroat Trout in streams acquire most of the food intake as daytime drift-feeding predators.more » « less
-
Abstract The Upper Clark Fork River (UCFR), Montana, a mid-order well-lit system with contemporary anthropogenic nitrogen (N) enrichment and natural geogenic sources of phosphorus (P), experiences annual algal blooms that influence ecosystem structure and function. This study was designed to assess the occurrence of riverine algal blooms (RABs) in the UCFR by characterizing the succession of periphyton and biogeochemical conditions following annual snowmelt runoff through autumnal baseflow conditions, and to provide a framework for assessing RAB progression in montane mid-order rivers more broadly. Using a 21-year database (2000–2020) collected over the growing season at three sites, historical assessment of the persistent and recurrent character of RABs in the UCFR showed that the magnitude of the summer bloom was, in part, moderated by snowmelt disturbance. Abundance and growth forms of benthic algae, along with river physicochemistry (e.g., temperature) and water chemistry (N and P concentration), were measured over the course of snowmelt recession for three years (2018–2020) at the same three sites. Results documented the onset of major blooms of the filamentous green algae
Cladophora across all sites, commensurate with declines in dissolved inorganic N. Atomic N:P ratios of river water suggest successional transitions from P- to N-limitation associated with mid-season senescence ofCladophora and development of a secondary bloom of N-fixing cyanobacteria, dominated byNostoc cf. pruniforme . Rates of N-fixation, addressed at one of the sites during the 2020 snowmelt recession, increased uponCladophora senescence to a maximal value among the highest reported for lotic systems (5.80 mg N/m2/h) before decreasing again to background levels at the end of the growing season. Based on these data, a heuristic model for mid-order rivers responding to snowmelt disturbance suggests progression from phases of physical stress (snowmelt) to optimal growth conditions, to conditions of biotic stress later in the growing season. Optimal growth is observed as green algal blooms that form shortly after peak snowmelt, then transition to stages dominated by cyanobacteria and autochthonous N production later in the growing season. Accordingly, interactions among algal composition, reactive N abundance, and autochthonous N production, suggest successional progression from reliance on external nutrient sources to increased importance of autochthony, including N-fixation that sustains riverine productivity during late stages of snowmelt recession.