skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trophic interactions among algal blooms, macroinvertebrates, and brown trout: Implications for trout recovery in a restored river
Abstract Positive correlation between trout abundance and dissolved metal concentrations along the Upper Clark Fork River (UCFR; Montana, USA) have forced restoration practitioners to seek underlying causes of reduced fish density beyond heavy metal contamination. Throughout the river, nutrient enrichment and summer algal blooms may be hindering full recovery of trout populations. In this study, we evaluated the community structure and metal body burdens of benthic invertebrates and characterized existing trophic linkages between brown trout and dominant invertebrate taxa before and during summer algal blooms in a downstream reach of the UCFR where fish densities are low (20–30 trout/km), and where metal contamination is relevant but minimal compared with upstream. In spring, estimated invertebrate abundance was 1,727 ± 217 individuals/m2and dominated by Ephemerellidae and Baetidae families. During summer algal bloom, invertebrate abundance increased 15‐fold (20,580 ± 3,510 individuals/m2) mostly due to greater abundance of Chironomidae, Hydropsychidae, and Simulidae. Copper body burdens (130 ± 42 ppm) were higher than any other heavy metal regardless of season, but detectable concentrations of arsenic, cadmium, and lead were also found. A Bayesian mixing model combining metal burdens and stable isotopes showed that in the spring, trout of average size (355 ± 65 g) relied mostly on epibenthic taxa (Ephemerellidae and Hydropsychidae), contrasting with small (<100 g) and large (>400 g) trout relying heavily on Baetidae, a major component of invertebrate drift. Foraging segregation related to trout size did not occur during summer algal blooms, which may reflect increasing influence of benthic algal proliferation or indicate the indiscriminate use of pool habitats as thermal refugia over summer conditions by trout of different ages.  more » « less
Award ID(s):
1655197 1757351 1655198
PAR ID:
10459348
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
River Research and Applications
Volume:
35
Issue:
9
ISSN:
1535-1459
Page Range / eLocation ID:
p. 1563-1574
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Upper Clark Fork River (UCFR), Montana, a mid-order well-lit system with contemporary anthropogenic nitrogen (N) enrichment and natural geogenic sources of phosphorus (P), experiences annual algal blooms that influence ecosystem structure and function. This study was designed to assess the occurrence of riverine algal blooms (RABs) in the UCFR by characterizing the succession of periphyton and biogeochemical conditions following annual snowmelt runoff through autumnal baseflow conditions, and to provide a framework for assessing RAB progression in montane mid-order rivers more broadly. Using a 21-year database (2000–2020) collected over the growing season at three sites, historical assessment of the persistent and recurrent character of RABs in the UCFR showed that the magnitude of the summer bloom was, in part, moderated by snowmelt disturbance. Abundance and growth forms of benthic algae, along with river physicochemistry (e.g., temperature) and water chemistry (N and P concentration), were measured over the course of snowmelt recession for three years (2018–2020) at the same three sites. Results documented the onset of major blooms of the filamentous green algaeCladophoraacross all sites, commensurate with declines in dissolved inorganic N. Atomic N:P ratios of river water suggest successional transitions from P- to N-limitation associated with mid-season senescence ofCladophoraand development of a secondary bloom of N-fixing cyanobacteria, dominated byNostoc cf. pruniforme. Rates of N-fixation, addressed at one of the sites during the 2020 snowmelt recession, increased uponCladophorasenescence to a maximal value among the highest reported for lotic systems (5.80 mg N/m2/h) before decreasing again to background levels at the end of the growing season. Based on these data, a heuristic model for mid-order rivers responding to snowmelt disturbance suggests progression from phases of physical stress (snowmelt) to optimal growth conditions, to conditions of biotic stress later in the growing season. Optimal growth is observed as green algal blooms that form shortly after peak snowmelt, then transition to stages dominated by cyanobacteria and autochthonous N production later in the growing season. Accordingly, interactions among algal composition, reactive N abundance, and autochthonous N production, suggest successional progression from reliance on external nutrient sources to increased importance of autochthony, including N-fixation that sustains riverine productivity during late stages of snowmelt recession. 
    more » « less
  2. The Upper Clark Fork River (UCFR) Long Term Research in Environmental Biology (LTREB) umbrella monitoring project generating these data is conducted separately and complementarily to the 200-million-dollar (USD) superfund project for ecological restoration of the UCFR, associated tributaries, and head water streams including Silver Bow and Warm Springs Creeks. Restoration along the UCFR in western Montana includes removal of metal-laden floodplain soils, lowering of the floodplain to its original elevation, and re-vegetation of over 70 km of the river’s floodplain closest to contaminant sources. The UCFR LTREB project includes bi-weekly water quality monitoring across the first 200 km of the river and its major tributaries along a gradient of heavy metal contamination associated with historic mining. Monitoring includes inorganic phosphorus and nitrogen concentrations, biotic standing stocks, and dissolved and whole-water heavy metal concentrations. The monitoring program began in 2017 with funding extended through 2028. The original analytical intent for these data was to assess the response of river dissolved organic carbon to the floodplain restoration. Data are total organic carbon combustion analyses (Shimadzu Scientific Instruments) of the concentration of organic carbon dissolved in filtered samples of well-mixed river thalweg water. Data are from the 2023 water year (1 Oct 2022 to 30 Sep 2023) from samples collected on the Upper Clark Fork River (USGS HUC 17010201) at project sites distributed along the river from the vicinity of Anaconda to Missoula, Montana, USA. 
    more » « less
  3. The Upper Clark Fork River (UCFR) Long Term Research in Environmental Biology (LTREB) umbrella monitoring project generating these data is conducted separately and complementarily to the 200-million-dollar (USD) superfund project for ecological restoration of the UCFR, associated tributaries, and head water streams including Silver Bow and Warm Springs Creeks. Restoration along the UCFR in western Montana includes removal of metal-laden floodplain soils, lowering of the floodplain to its original elevation, and re-vegetation of over 70 km of the river’s floodplain closest to contaminant sources. The UCFR LTREB project includes bi-weekly water quality monitoring across the first 200 km of the river and its major tributaries along a gradient of heavy metal contamination associated with historic mining. Monitoring includes inorganic phosphorus and nitrogen concentrations, biotic standing stocks, and dissolved and whole-water heavy metal concentrations. The monitoring program began in 2017 with funding extended through 2028. The original analytical intent for these data was to assess the response of river dissolved organic carbon to the floodplain restoration. Data are total organic carbon combustion analyses (Shimadzu Scientific Instruments) of the concentration of organic carbon dissolved in filtered samples of well-mixed river thalweg water. Data are from the 2024 water year (1 Oct 2023 to 30 Sep 2024) from samples collected on the Upper Clark Fork River (USGS HUC 17010201) at project sites distributed along the river from the vicinity of Anaconda to Missoula, Montana, USA. 
    more » « less
  4. The Upper Clark Fork River (UCFR) Long Term Research in Environmental Biology (LTREB) umbrella monitoring project generating these data is conducted separately and complementarily to the 200-million-dollar (USD) superfund project for ecological restoration of the UCFR, associated tributaries, and head water streams including Silver Bow and Warm Springs Creeks. Restoration along the UCFR in western Montana includes removal of metal-laden floodplain soils, lowering of the floodplain to its original elevation, and re-vegetation of over 70 km of the river’s floodplain closest to contaminant sources. The UCFR LTREB project includes bi-weekly water quality monitoring across the first 200 km of the river and its major tributaries along a gradient of heavy metal contamination associated with historic mining. Monitoring includes inorganic phosphorus and nitrogen concentrations, biotic standing stocks, and dissolved and whole-water heavy metal concentrations. The monitoring program began in 2017 with funding extended through 2028. The original analytical intent for these data was to assess the response of river dissolved organic carbon to the floodplain restoration. Data are Aurora Total Organic Carbon combustion analyses of the concentration of organic carbon dissolved in filtered samples of well-mixed river thalweg water. Data are from the 2021 water year (1 Oct 2020 to 30 Sep 2021) from samples collected on the Upper Clark Fork River (USGS HUC 17010201) at project sites distributed along the river from the vicinity of Anaconda to Missoula, Montana, USA. 
    more » « less
  5. Abstract Climate change is increasing the frequency, severity, and extent of wildfires and drought in many parts of the world, with numerous repercussions for the physical, chemical, and biological characteristics of streams. However, information on how these perturbations affect top predators and their impacts on lower trophic levels in streams is limited.The top aquatic predator in southern California streams is nativeOncorhynchus mykiss, the endangered southern California steelhead trout (trout). To examine relationships among the distribution of trout, environmental factors, and stream invertebrate resources and assemblages, we sampled pools in 25 stream reaches that differed in the presence (nine reaches) or absence (16 reaches) of trout over 12 years, including eight reaches where trout were extirpated during the study period by drought or post‐fire flood disturbances.Trout were present in deep pools with high water and habitat quality. Invertebrate communities in trout pools were dominated by a variety of medium‐sized collector–gatherer and shredder invertebrate taxa with non‐seasonal life cycles, whereas tadpoles and large, predatory invertebrates (Odonata, Coleoptera, Hemiptera [OCH]), often with atmospheric breather traits, were more abundant in troutless than trout pools.Structural equation modelling of the algal‐based food web indicated a trophic cascade from trout to predatory invertebrates to collector–gatherer taxa and weaker direct negative trout effects on grazers; however, both grazers and collector–gatherers also were positively related to macroalgal biomass. Structural equation modelling also suggested that bottom‐up interactions and abiotic factors drove the detritus‐based food web, with shredder abundance being positively related to leaf litter (coarse particulate organic matter) levels, which, in turn, were positively related to canopy cover and negatively related to flow. These results emphasise the context dependency of trout effects on prey communities and of the relative importance of top‐down versus bottom‐up interactions on food webs, contingent on environmental conditions (flow, light, nutrients, disturbances) and the abundances and traits of component taxa.Invertebrate assemblage structure changed from a trout to a troutless configuration within a year or two after trout were lost owing to post‐fire scouring flows or drought. Increases in OCH abundance after trout were lost were much more variable after drought than after fire. The reappearance of trout in one stream resulted in quick, severe reductions in OCH abundance.These results indicate that climate‐change induced disturbances can result in the extirpation of a top predator, with cascading repercussions for stream communities and food webs. This study also emphasises the importance of preserving or restoring refuge habitats, such as deep, shaded, perennial, cool stream pools with high habitat and water quality, to prevent the extirpation of sensitive species and preserve native biodiversity during a time of climate change. 
    more » « less