skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Template‐based modeling by ClusPro in CASP13 and the potential for using co‐evolutionary information in docking
Abstract

As a participant in the joint CASP13‐CAPRI46 assessment, the ClusPro server debuted its new template‐based modeling functionality. The addition of this feature, called ClusPro TBM, was motivated by the previous CASP‐CAPRI assessments and by the proven ability of template‐based methods to produce higher‐quality models, provided templates are available. In prior assessments, ClusPro submissions consisted of models that were produced via free docking of pre‐generated homology models. This method was successful in terms of the number of acceptable predictions across targets; however, analysis of results showed that purely template‐based methods produced a substantially higher number of medium‐quality models for targets for which there were good templates available. The addition of template‐based modeling has expanded ClusPro's ability to produce higher accuracy predictions, primarily for homomeric but also for some heteromeric targets. Here we review the newest additions to the ClusPro web server and discuss examples of CASP‐CAPRI targets that continue to drive further development. We also describe ongoing work not yet implemented in the server. This includes the development of methods to improve template‐based models and the use of co‐evolutionary information for data‐assisted free docking.

 
more » « less
Award ID(s):
1759277 1759472
NSF-PAR ID:
10459414
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Proteins: Structure, Function, and Bioinformatics
Volume:
87
Issue:
12
ISSN:
0887-3585
Page Range / eLocation ID:
p. 1241-1248
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Targets in the protein docking experiment CAPRI (Critical Assessment of Predicted Interactions) generally present new challenges and contribute to new developments in methodology. In rounds 38 to 45 of CAPRI, most targets could be effectively predicted using template‐based methods. However, the server ClusPro required structures rather than sequences as input, and hence we had to generate and dock homology models. The available templates also provided distance restraints that were directly used as input to the server. We show here that such an approach has some advantages. Free docking with template‐based restraints using ClusPro reproduced some interfaces suggested by weak or ambiguous templates while not reproducing others, resulting in correct server predicted models. More recently we developed the fully automated ClusPro TBM server that performs template‐based modeling and thus can use sequences rather than structures of component proteins as input. The performance of the server, freely available for noncommercial use athttps://tbm.cluspro.org, is demonstrated by predicting the protein‐protein targets of rounds 38 to 45 of CAPRI.

     
    more » « less
  2. ABSTRACT

    The heavily used protein–protein docking server ClusPro performs three computational steps as follows: (1) rigid body docking, (2) RMSD based clustering of the 1000 lowest energy structures, and (3) the removal of steric clashes by energy minimization. In response to challenges encountered in recent CAPRI targets, we added three new options to ClusPro. These are (1) accounting for small angle X‐ray scattering data in docking; (2) considering pairwise interaction data as restraints; and (3) enabling discrimination between biological and crystallographic dimers. In addition, we have developed an extremely fast docking algorithm based on 5D rotational manifold FFT, and an algorithm for docking flexible peptides that include known sequence motifs. We feel that these developments will further improve the utility of ClusPro. However, CAPRI emphasized several shortcomings of the current server, including the problem of selecting the right energy parameters among the five options provided, and the problem of selecting the best models among the 10 generated for each parameter set. In addition, results convinced us that further development is needed for docking homology models. Finally, we discuss the difficulties we have encountered when attempting to develop a refinement algorithm that would be computationally efficient enough for inclusion in a heavily used server. Proteins 2017; 85:435–444. © 2016 Wiley Periodicals, Inc.

     
    more » « less
  3. Abstract

    The paper presents analysis of our template‐based and free docking predictions in the joint CASP12/CAPRI37 round. A new scoring function for template‐based docking was developed, benchmarked on the Dockgroundresource, and applied to the targets. The results showed that the function successfully discriminates the incorrect docking predictions. In correctly predicted targets, the scoring function was complemented by other considerations, such as consistency of the oligomeric states among templates, similarity of the biological functions, biological interface relevance, etc. The scoring function still does not distinguish well biological from crystal packing interfaces, and needs further development for the docking of bundles of α‐helices. In the case of the trimeric targets, sequence‐based methods did not find common templates, despite similarity of the structures, suggesting complementary use of structure‐ and sequence‐based alignments in comparative docking. The results showed that if a good docking template is found, an accurate model of the interface can be built even from largely inaccurate models of individual subunits. Free docking however is very sensitive to the quality of the individual models. However, our newly developed contact potential detected approximate locations of the binding sites.

     
    more » « less
  4. Abstract

    In the ligand prediction category of CASP15, the challenge was to predict the positions and conformations of small molecules binding to proteins that were provided as amino acid sequences or as models generated by the AlphaFold2 program. For most targets, we used our template‐based ligand docking program ClusPro ligTBM, also implemented as a public server available athttps://ligtbm.cluspro.org/. Since many targets had multiple chains and a number of ligands, several templates, and some manual interventions were required. In a few cases, no templates were found, and we had to use direct docking using the Glide program. Nevertheless, ligTBM was shown to be a very useful tool, and by any ranking criteria, our group was ranked among the top five best‐performing teams. In fact, all the best groups used template‐based docking methods. Thus, it appears that the AlphaFold2‐generated models, despite the high accuracy of the predicted backbone, have local differences from the x‐ray structure that make the use of direct docking methods more challenging. The results of CASP15 confirm that this limitation can be frequently overcome by homology‐based docking.

     
    more » « less
  5. Abstract Summary

    We present an approach for the efficient docking of peptide motifs to their free receptor structures. Using a motif based search, we can retrieve structural fragments from the Protein Data Bank (PDB) that are very similar to the peptide’s final, bound conformation. We use a Fast Fourier Transform (FFT) based docking method to quickly perform global rigid body docking of these fragments to the receptor. According to CAPRI peptide docking criteria, an acceptable conformation can often be found among the top-ranking predictions.

    Availability and Implementation

    The method is available as part of the protein-protein docking server ClusPro at https://peptidock.cluspro.org/nousername.php.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less