skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Natural variation in the contribution of microbial density to inducible immune dynamics
Abstract Immune responses evolve to balance the benefits of microbial killing against the costs of autoimmunity and energetic resource use. Models that explore the evolution of optimal immune responses generally include a term for constitutive immunity, or the level of immunological investment prior to microbial exposure, and for inducible immunity, or investment in immune function after microbial challenge. However, studies rarely consider the functional form of inducible immune responses with respect to microbial density, despite the theoretical dependence of immune system evolution on microbe‐ versus immune‐mediated damage to the host. In this study, we analyse antimicrobial peptide (AMP) gene expression from seven wild‐caught flour beetle populations (Triboliumspp.) during acute infection with the virulent bacteriaBacillus thuringiensis(Bt) andPhotorhabdus luminescens(P.lum) to demonstrate that inducible immune responses mediated by the humoral IMD pathway exhibit natural variation in both microbe density‐dependent and independent temporal dynamics. Beetle populations that exhibited greater AMP expression sensitivity to Bt density were also more likely to die from infection, while populations that exhibited higher microbe density‐independent AMP expression were more likely to surviveP. luminescensinfection. Reduction in pathway signalling efficiency through RNAi‐mediated knockdown of theimdgene reduced the magnitude of both microbe‐independent and dependent responses and reduced host resistance to Bt growth, but had no net effect on host survival. This study provides a framework for understanding natural variation in the flexibility of investment in inducible immune responses and should inform theory on the contribution of nonequilibrium host‐microbe dynamics to immune system evolution.  more » « less
Award ID(s):
1753982
PAR ID:
10459469
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
28
Issue:
24
ISSN:
0962-1083
Page Range / eLocation ID:
p. 5360-5372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pathogen adaptations during host-pathogen co-evolution can cause the host balance between immunity and immunopathology to rapidly shift. However, little is known in natural disease systems about the immunological pathways optimised through the trade-off between immunity and self-damage. The evolutionary interaction between the conjunctival bacterial infectionMycoplasma gallisepticum(MG) and its avian host, the house finch (Haemorhous mexicanus), can provide insights into such adaptations in immune regulation. Here we use experimental infections to reveal immune variation in conjunctival tissue for house finches captured from four distinct populations differing in the length of their co-evolutionary histories with MG and their disease tolerance (defined as disease severity per pathogen load) in controlled infection studies. To differentiate contributions of host versus pathogen evolution, we compared house finch responses to one of two MG isolates: the original VA1994 isolate and a more evolutionarily derived one, VA2013. To identify differential gene expression involved in initiation of the immune response to MG, we performed 3’-end transcriptomic sequencing (QuantSeq) of samples from the infection site, conjunctiva, collected 3-days post-infection. In response to MG, we observed an increase in general pro-inflammatory signalling, as well as T-cell activation and IL17 pathway differentiation, associated with a decrease in the IL12/IL23 pathway signalling. The immune response was stronger in response to the evolutionarily derived MG isolate compared to the original one, consistent with known increases in MG virulence over time. The host populations differed namely in pre-activation immune gene expression, suggesting population-specific adaptations. Compared to other populations, finches from Virginia, which have the longest co-evolutionary history with MG, showed significantly higher expression of anti-inflammatory genes and Th1 mediators. This may explain the evolution of disease tolerance to MG infection in VA birds. We also show a potential modulating role of BCL10, a positive B- and T-cell regulator activating the NFKB signalling. Our results illuminate potential mechanisms of house finch adaptation to MG-induced immunopathology, contributing to understanding of the host evolutionary responses to pathogen-driven shifts in immunity-immunopathology trade-offs. 
    more » « less
  2. Despite decades of focus on crickets (family: Gryllidae) as a popular commodity and model organism, we still know very little about their immune responses to microbial pathogens. Previous studies have measured downstream immune effects (e.g., encapsulation response, circulating hemocytes) following an immune challenge in crickets, but almost none have identified and quantified the expression of immune genes during an active pathogenic infection. Furthermore, the prevalence of covert (i.e., asymptomatic) infections within insect populations is becoming increasingly apparent, yet we do not fully understand the mechanisms that maintain low viral loads. In the present study, we measured the expression of several genes across multiple immune pathways in Gryllodes sigillatus crickets with an overt or covert infection of cricket iridovirus (CrIV). Crickets with overt infections had higher relative expression of key pathway component genes across the Toll, Imd, Jak/STAT, and RNAi pathways. These results suggests that crickets can tolerate low viral infections but can mount a robust immune response during an overt CrIV infection. Moreover, this study provides insight into the immune strategy of crickets following viral infection and will aid future studies looking to quantify immune investment and improve resistance to pathogens. 
    more » « less
  3. Abstract Understanding host immune function and ecoimmunology is increasingly important at a time when emerging infectious diseases (EIDs) threaten wildlife. One EID that has emerged and spread widely in recent years is chytridiomycosis, caused by the fungal pathogenBatrachochytrium dendrobatidis(Bd), which is implicated unprecedented amphibian declines around the world. The impacts ofBdhave been severe for many amphibian species, but some populations have exhibited signs of persistence, and even recovery, in some regions. Many mechanisms may underpin this pattern and amphibian immune responses are likely one key component. Although we have made great strides in understanding amphibian immunity, the complement system remains poorly understood. The complement system is a nonspecific, innate immune defense that is known to enhance other immune responses. Complement activation can occur by three different biochemical pathways and result in protective mechanisms, such as inflammation, opsonization, and pathogen lysis, thereby providing protection to the host. We currently lack an understanding of complement pathway activation for chytridiomycosis, but several studies have suggested that it may be a key part of an early and robust immune response that confers host resistance. Here, we review the available research on the complement system in general as well as amphibian complement responses toBdinfection. Additionally, we propose future research directions that will increase our understanding of the amphibian complement system and other immune responses toBd. Finally, we suggest how a deeper understanding of amphibian immunity could enhance the conservation and management of amphibian species that are threatened by chytridiomycosis. 
    more » « less
  4. Abstract While vertebrate immune systems are appreciated for their complexity and adaptability, invertebrate immunity is often considered to be less complex. However, immune responses in many invertebrates likely involve sophisticated processes. Interactions between the crustacean hostDaphnia dentiferaand its fungal pathogenMetschnikowia bicuspidataprovide an excellent model for exploring the mechanisms underlying crustacean immunity. To explore the genomic basis of immunity inDaphnia, we used RNA‐sequencing technology to quantify differential gene expression between individuals of a single host genotype exposed or unexposed toM. bicuspidataover 24 h. Transcriptomic analyses showed that the number of differentially expressed genes between the control (unexposed) and experimental (exposed) groups increased over time. Gene ontology enrichment analysis revealed that differentially expressed genes were enriched for immune‐related molecules and processes, such as cuticle development, prostaglandin, and defense response processes. Our findings provide a suite of immunologically relevant genes and suggest the presence of a rapidly upregulated immune response involving the cuticle inDaphnia. Studies involving gene expression responses to pathogen exposure shine a light on the processes occurring during the course of infection. By leveraging knowledge on the genetic basis for immunity, immune mechanisms can be more thoroughly understood to refine our understanding of disease spread within invertebrate populations. 
    more » « less
  5. Abstract The evolution of host immunity occurs in the context of the microbiome, but little theory exists to predict how resistance against pathogens might be influenced by the need to tolerate and regulate commensal microbiota. We present a general model to explore the optimal investment in host immunity under conditions in which the host can, versus cannot easily distinguish among commensal versus pathogenic bacteria, and when commensal microbiota can, versus cannot protect the host against the impacts of pathogen infection. We find that a loss of immune vigilance associated with innate immunity over evolutionary time can occur due to the challenge of discriminating between pathogenic and other microbe species. Further, we find the greater the protective effect of microbiome species, acting either directly or via competition with a pathogen, or the higher the costs of immunity, the more likely the loss of immune vigilance is. Conversely, this effect can be reversed when pathogens increase host mortality. Generally, the magnitude of costs of immunity required to allow evolution of decreased immune vigilance are predicted to be lowest when microbiome and pathogen species most resemble each other (in terms of host recognition), and when immune effects on the pathogen are weak. Our model framework makes explicit the core trade-offs likely to shape the evolution of immunity in the context of microbiome/pathogen discrimination. We discuss how this informs interpretation of patterns and process in natural systems, including vulnerability to pathogen emergence. 
    more » « less